Structural Notebook Submission C

AC Hotel Philadelphia Philadelphia, Pennsylvania

Jesse C Bordeau Heather Sustersic, Advisor 11/16/2015

Table of Contents (Notebook C starts on pg 53)

Executive Summary2
Building Abstract3
Site Location4
Documents used in preparation for this project5
Gravity Load Determination (Dead, Live & Snow)6
Wind Load Determination14
Seismic Load Determination 23
Typical Bay27
Alternative Systems
System Comparison
Lateral Analysis
Lateral Resisting Elements
Modeling Approach/Assumptions/Constraints55
Center of Mass (COM) & Center of Rigidity (COR)56
Direct Shear & Torsional Rigidity59
Wind Load Comparison60
Seismic Load Comparison
Controlling Case
Lateral System Checks
Member Spot Checks65
Appendix A69
Appendix B77

Executive Summary

AC Hotel Philadelphia is a 15-story residential transient hotel (including penthouse) located in the heart of downtown Philadelphia. This new hotel, owned by Baywood Hotels, will be built on top of the previous NFL Films and Warner Bros distribution center, a historic twostory building located at the corner of Florist and North 13th Street in Philadelphia.

The original two-story, 31'-0" tall building is a load bearing masonry structure. In order to properly satisfy the proposed addition, a mat foundation of varying thickness will be installed and the building will be gutted and restructured. The new construction will consist of composite steel at the bottom two levels, supporting a 12-story steel-frame structure atop, capped with a penthouse. The typical floor to floor height measures 10'6". Multiple 14" shear walls make up the lateral system until floor 3 where braced frames are utilized for architectural/spatial purposes including door and window openings.

AC Hotel Philadelphia was designed using the 2009 edition of the International Building Code and ASCE 7-05 was used to determine lateral loads on the building. The City of Philadelphia Building Code (with current amendments) and the 2014 version of "AC Hotels by Marriott Design Standards" were also used as references. The Philadelphia Historical Commission also influenced the project boundaries.

The purpose of this report is to identify the structural loads used in the design of AC Hotel Philadelphia. Gravity, wind and seismic loads are established in the following report. A code analysis was completed in order to have an accurate understanding of the design loads used for 230 North 13th Street. Codes were used in accordance to the actual design codes applied when designing the building.

AC Hotel Philadelphia

Baywood Hotels | 230 North 13th Street, Philadelphia, Pa

Project Information

- Occupancy: Residential transient hotel
- Stories: parking garage + 14 levels above grade + General Contractor: Clemens Construction Mech. Penthouse & Rooftop Terrace
 Architect: Spg3
 - I92ft. Above sidewalk grade
- Overall project cost: \$35,000,000
- Size: 107,680 sq.ft.
- Construction Dates: Fall 2015 Summer 2017

Project Team

Owner: Kurt Blorstad General Contractor: Clemens Construction Architect: Spg3 Structural Engineer: Holbert Apple Associates MEP: McHugh Engineering

Features:

- I 50 luxury units
- Underground, valet parking via car elevator
- Exclusive restaurant for guests
- Fitness center & indoor pool
- Green Roofs
 - Extensive (2nd & 3nd Levels)
 - Intensive (Rooftop Terrace)

Structure:

- Foundation
 - Mat-slab
 - Underpinning of adjacent structures during construction
- Framing
 - Structural steel framing
 - Composite deck (normal-weight concrete)
 - Precast hollow-core plank girder slab system
- Lateral System
 - Concrete shear walls (lower levels)
 - Concentric braced frames (upper levels)

MEP:

- Mechanical
 - (4) three-ton air handling units
 - Water-source heat pump
 - Energy recovery wheel on the roof used to mix outside air with return air
 - Plethora of fans used to exhaust class 38:4 air
- Electrical
 - 600KW Emergency generator on roof
 - 2500A Main Circuit Breaker

JESSE BORDEAU ~ Structural Option http://jbordeau18.wix.com/thesis

Site Location

230 North 13th St. is located in Philadelphia, Pennsylvania in proximity to the Liberty Bell, The Franklin Institute and the Eastern State Penitentiary. The site lies northeast of center city, offering dwellers a beautiful view of the Philadelphia skyline. Figures 1 and 2 clarify the exact location below.

Figure 2: Map of Philadelphia (Courtesy Google Maps)

Documents used in preparation for this report

Listed below are the codes and other supporting documents which were used to determine loads, factors and other variables for this report.

- American Society of Civil Engineers
 - ASCE 7-05
- International Code Council
 - International Building Code 2009
- Construction drawings
 - Courtesy Holbert Apple Associates
- Course notes from previous semesters
 - AE530 Computer Modeling of Buildings
 - AE 430 Indeterminate Structures
 - o AE 403 Advanced Steel Design
- Hambro Composite Floor System Design Guide
- Girder-Slab System LRFD Version Design Guide v3.1
 - Courtesy Holbert Apple Associates
- AISC Steel Manual

Gravity Load Determination (Dead, Live & Snow) Roof Loads

The roof load calculated below is for the extensive green roof used in several locations around the building. Loads are compared to code minimum (IBC ch 16, Table 1607.1) within each section. Original loads, determined by professionals are located at the end of the gravity load portion of this report.

	NOTEBOOK SUBRISSION A GRAVITY LOADS	JESSE BORDEAU	10
<u>.</u>	Roof Dead +Live Loods (and 3rd Story, Reof	#ftenthouse)	
		MODULAR GREEN ROOF SYSTEM	
		BALLANTED THRUMEDER	
Č.	Design Loods: -Live Lood: 100pef troof garden EIBC20 (Hin) -Dood Lood:	c9, Section 1607.1, Table 1607.1]	
	Medular breen Roof System = SOpeF Ballasted EPDM Roof System = 345F but Tapared Rigid Insulation = (5M 1MW) = 5 Metal Roof Deck (18gage) = 3 psf Mechanical Allowance = 4 psf Superimposed Road Load = 3 psf	c only a perimeter ipst	
0		- compand to soper the extensive green stof	

Note: Compared to extensive green roofs. intensive green roofs require higher design criteria because of the possibility of human traffic over it. Modular Green Roof Systems vary in weight, therefore an average load was applied.

Floor Loads

TYPE FLOOR DEAD&LIVE LOADS (GIRDER SLAB SYSTEM) DB + D-BEAM DB 5X 57 DB 5X 61	U
DESIGN LOADS LIVE LOADS: 40 PSF UNIFORM CIRC 2004 TABLE 1607. I = RESIDENTIAL M (CO PSF (CORRESONS) -LIVE LOADS: 40 PSF UNIFORM CIRC 2004 TABLE 1607. I = RESIDENTIAL M (CO PSF (CORRESONS) -DEAD LOADS 8" PRECAST FLANK = 83 3" SOUND ATTEMATION BATT = 3" (1""/u) = 3PSF	
DESILVE LOADS -LIVE LOADS: 40 PSF UNIFORM EIRC 2004 TABLE 1607. 1 = RESIDENTIAL M (00 PSF (CORRIDORS) -DEAD LOADS 8" PRELAST FLANK = 83 3" SOUND ATTEMATION BATT = 3" (1997/14) = 3495	
DESIGN LOADS -LIVE LOAD: 40 PSt UNIFORM ELBL 2000 TABLE 1607. 1- RESIDENTIAL M (200 FSF (CORRIDORS) -DEAD LOAD: 3" SOUND ATTEMATION BATT = 3" (1 PM/14) = 3 PSF	
DESILINI LOADS - LIVE LOAD: 40 PSF UNIFORM EIBL 2000 TABLE 1607. I = RESIDENTIAL M (CO PSF (CORRIDORS) - DEAD LOAD: - B" PRECAST FLANK = 83 - 3" SOUND ATTEMATION BATT = 3" (1 ""/w) = 3 PSF	W-LORE
DESIGN LOADS -LIVE LOAD: 40 PST UNIFORM EIBL 2004 TABLE 1607. I + RESIDENTIAL M 100 PSF (CORRIDORS) -DEAD LOAD: B" PRECAST FLAVE = 83 3" SOUND ATTEMATION BATT = 3" (1""//w) = 3PSF	
DESIGN LOADS -LIVE LOAD: 40 PSF UNIFORM EIBL 2009 TABLE 1607. I - RESIDENTIAL IN 100 PSF (CORRIDORS) -DEAD LOAD: 8" PRECAST FLAVE = 83 3" SOUND ATTEMATION BATT = 3" (1 ""//w) = 3 PSF	
-LIVE LOAD; 40 PSF UNIFORM EIBL 2004 TABLE 1607. I - RESIDENTIAL H 100 PSF (CORRIDORS) DEAD LOAD: 8" PRECAST FLAVE = "83 3" SOUND ATTEMATION BATT = 3" (1 ""/")= 3 PSF	
-LIVE LOAD; 40 PSF UNIFORM EIBL 2009 TABLE 1607. I - RESIDENTIAL H 100 PSF (CORRIDORS) DEAD LOAD: 2" PRECAST FLAVE = "83 3" SOUND ATTEMATION BATT = 3" (1 ""/"")= 3 PSF	
DEAD LOAD: E" PRECAST FLAVE = "83 3" SOUND ATTEMATION BATT = 3" (100%/m) = 3455	
3" SOUND ATTEMATION BATT = 3" (1000/14)= 3455	us []
CARFET & PAD = 2 PDF	
5/3" GWB = (5/2") (0.55 F##/1/2") = 2.75 PSP SELME 9 P	SF
MECH. ALLOUANCE - 4 FSF	
SUPERIMPOSED OL - 3 PSF	
92.PSF	

The girder-slab system is utilized to benefit construction efficiency and to reduce floor-to-floor height.

Exterior Wall Loads

Listed below are the dead load values used by the engineers who originally determined the loads for AC Marriott Philadelphia.

Table 1: Superimposed dead loads

Superimposed Dead Loads (in addition to structure self-weight)				
Area Loading [psf]				
Typical Roof	30			
Floors 10				
Intensive Green Roof	200			
Extensive Green Roof	60			

Wind Load Determination

The following section is the wind calculations for 230 North 13th Street using ASCE 7-05 chapter 6. Most of the calculations were determined using Microsoft Excel, therefore spreadsheets are provided. These spreadsheets can be found at the end of this section and in Appendix A which also include base shear, along with diagrams which visually display the forces & pressures vs. building height.

NOTEBOOK SUB A	WIND LOADS	JESSE B
WIND LOADS:		
OCCUPANCY CATEGORY CTA	:[i-i]	
I		
IMPORTANCE FACTOR ETAR	SLE 7-4]	
I=1.0		
BASIC WIND SPEED EFIGUR	E6-1]	
V=90MPH		
WIND DIRECTIONALITY FAC	TOR (KJ) [TABLE 6-4]:	
K4=0.85		
EXPOSURE CATEGORY ESECTION	5N. 6-5-6-]	
CATEGORY B TOPOGRAPHIC FACTOR (K2		
BUILDING W/ NO ESC		
GUST EFFECT FACTOR:		
	Ta) [SECTION 12.8-7];	
Ta=Cthn X		
[TABLE 12.8-2] -	* ESSENTRIC BRACED STEE	L FRAMES (MAJORITY)
C+=0.03,	K=0.75 - Ta=	(0.03)(192)0-75=1.5473
	UENCY OF BUILDING (FUNDAMEN	
$\eta_1 = \frac{1}{T_{P_1}} = \frac{1}{1.5}$	47	BLE STRUCTURE [SECTION 6.5.8.2]
[C-8] Gr=	$\frac{1.71 \times \left(\frac{3^2 \times 2^2 + 9^2 \times R^2}{1 + 1.79 \times I_2} \right)}{1 + 1.79 \times I_2}$	

Advisor | Heather Sustersic Structural

Wind Pressu	re Determination	(N-S)							Net Press	sures [psf]
Location	Story	z [ft]	kz	qz [psf]	Ср	qzGCp [psf]	Gcpi	qhGCpi [psf]	qzGCp-qh(+Gcpi)	qzGCp-qh(-Gcpi)
Windward	1	0	0.57	10.05	0.8	7.02	0.18	3.78	3.25	10.8
	2	15.66	0.57	10.05	0.8	7.02	0.18	3.78	3.25	10.8
	3	33.75	0.72	12.74	0.8	8.91	0.18	3.78	5.13	12.7
	4	44.25	0.78	13.75	0.8	9.61	0.18	3.78	5.84	13.4
	5	54.75	0.83	14.63	0.8	10.23	0.18	3.78	6.45	14.0
	6	65.25	0.87	15.33	0.8	10.72	0.18	3.78	6.95	14.5
	7	75.75	0.91	16.09	0.8	11.25	0.18	3.78	7.48	15.0
	8	86.25	0.96	16.99	0.8	11.88	0.18	3.78	8.10	15.7
	9	96.75	0.98	17.27	0.8	12.08		3.78	8.30	15.9
	10	107.25	1.01	17.80	0.8	12.45		3.78	8.67	16.2
	11	117.75	1.03	18.21	0.8	12.73	0.18	3.78	8.96	16.5
		128.25	1.06	18.70	0.8	13.08	0.18	3.78	9.30	16.9
		138.75	1.09	19.21	0.8	13.43	0.18	3.78	9.66	17.2
		149.25	1.11	19.56	0.8	13.68		3.78	9.90	17.5
	Penthouse Deck	163.00	1.13	19.92	0.8	13.93		3.78	10.15	17.7
	Penthouse	163.25	1.13	19.92	0.8	13.93		3.78	10.15	17.7
	Roof	181.00	1.17	20.62	0.8	14.42	0.18	3.78	10.64	18.2
	Elevator Roof	191.02	1.19	20.97	0.8	14.67	0.18	3.78	10.89	18.4
Leeward	All	All	1.19	20.97	-0.5	-9.17	0.18	3.78	-12.94	-5.39
Side	All	All	1.19	20.92	-0.7	-12.80	0.18	3.77	-16.57	-9.03
Parapet (WW)	2nd Story	31.50	0.71	12.51			1.50	18.77		18.77
	Penthouse	167.75	1.15	20.27			1.50	30.40		30.40
	Roof	185.75	1.18	20.80			1.50	31.20		31.20
	Elevator Roof	192.00	1.19	20.97			1.50	31.46		31.46
Parapet (LW)	2nd Story	31.50	0.71	12.51			-1.00	-12.51		-12.51
	Penthouse	167.75	1.15	20.27			-1.00	-20.27		-20.27
	Roof	185.75	1.18	20.80			-1.00	-20.80		-20.80
	Elevator Roof	192.00	1.19	20.97			-1.00	-20.97		-20.97
Roof	(0-95.5ft)	191.02	1.19	20.97	-1.04	-19.06	0.18	3.78	-22.84	-15.29
NUUI	(0-95.5ft) (>95.5ft)	191.02	1.19	20.97	-1.04			3.78	-22.84 -13.91	
	(255.511)	191.02	1.19	20.97	-0.7	-10.13	0.18	3.78	-13.91	-6.36

Table 2: Wind pressures for windward, leeward and uplift displayed for the North-South direction.

Table 3: Other factors used for wind determination (N-S direction).

V^2	8100
I	1
kd	0.85
kzt	1
G	0.874
L/B	0.69

Table 4: Wind story shears displayed for the (N-S) direction.

Foreas	В	nuu nl	Н	Total Force
Forces		pw+pl		
F1	112.7	16.19	7.83	14.3
F2	112.7	16.19	16.875	30.8
F3	112.7	18.08	14.295	29.1
F4	112.7	18.78	10.5	22.2
F5	112.7	19.39	10.5	23.0
F6	112.7	19.89	10.5	23.5
F7	112.7	20.42	10.5	24.2
F8	112.7	21.05	10.5	24.9
F9	112.7	21.24	10.5	25.1
F10	112.7	21.61	10.5	25.6
F11	112.7	21.90	10.5	25.9
F12	112.7	22.24	10.5	26.3
F13	112.7	22.60	10.5	26.7
F14	112.7	22.85	12.125	31.2
FPD	112.7	23.09	7	18.2
FP	112.7	23.09	9	23.4
FR	112.7	23.58	13.885	36.9
FER	112.7	23.83	5.01	13.5
			[kip]	444.9

Wind Pressu	re Determination (E-W)							Net Press	ures [psf]
Location	Story	z [ft]	kz	qz [psf]	Ср	qzGCp [psf]	Gcpi	qhGCpi [psf]	qzGCp-qh(+Gcpi)	qzGCp-qh(-Gcpi)
Windward	1	0	0.57	10.05	0.8	7.15	0.18	1.81	5.34	9.0
	2	15.66	0.57	10.05	0.8	7.15	0.18	1.81	5.34	9.0
	3	33.75	0.72	12.74	0.8	9.07	0.18	2.29	6.78	11.4
	4	44.25	0.78	13.75	0.8	9.79	0.18	2.47	7.31	12.3
	5	54.75	0.83	14.63	0.8	10.42	0.18	2.63	7.78	13.0
	6	65.25	0.87	15.33	0.8	10.92	0.18	2.76	8.16	13.7
	7	75.75	0.91	16.09	0.8	11.46	0.18	2.90	8.56	14.4
	8	86.25	0.96	16.99	0.8	12.10	0.18	3.06	9.04	15.2
	9	96.75	0.98	17.27	0.8	12.30	0.18	3.11	9.19	15.4
	10	107.25	1.01	17.80	0.8	12.67	0.18	3.20	9.47	15.9
	11		1.03	18.21	0.8	12.96		3.28	9.69	16.2
		128.25	1.06	18.70	0.8	13.31	0.18	3.37	9.95	16.7
		138.75	1.09	19.21	0.8	13.68		3.46	10.22	17.1
		149.25	1.11	19.56	0.8	13.93		3.52	10.41	17.5
	Penthouse Deck	163.00	1.13	19.92	0.8	14.18		3.59	10.60	17.8
	Penthouse	163.25	1.13	19.92	0.8	14.18		3.59	10.60	17.8
	Roof	181.00	1.17	20.62	0.8	14.68		3.71	10.97	18.4
	Elevator Roof	191.02	1.19	20.97	0.8	14.93	0.18	3.78	11.16	18.7
Leeward	All	All	1.19	20.92	- 0. 5	-9.31	0.18	3.77	-13.08	-5.54
Side	All	All	1.19	20.92	-0.7	-13.03	0.18	3.77	-16.80	-9.27
Parapet (WW)	2nd Story	31.50	0.71	12.51			1.50	18.77		18.77
	Penthouse	167.75	1.15	20.27			1.50	30.40		30.40
	Roof	185.75	1.18	20.80			1.50	31.20		31.20
	Elevator Roof	192.00	1.19	20.97			1.50	31.46		31.46
Parapet (LW)	2nd Story	31.50	0.71	12.51			-1.00	-12.51		-12.51
, , , , ,	Penthouse	167.75	1.15	20.27			-1.00	-20.27		-20.27
	Roof	185.75	1.18	20.80			-1.00	-20.80		-20.80
	Elevator Roof	192.00	1.19	20.97			-1.00	-20.97		-20.97
Roof	(0-95.5ft)	191.02	1.19	20.97	-1.04	-31.41	0.18	3.78	-35.19	-27.64
1001	(>95.5ft)	191.02	1.19	20.97	-1.04	-31.41 -21.14		3.78	-24.92	-17.37
	(295.511)	191.02	1.19	20.97	-0.7	-21.14	0.18	3.78	-24.92	-17.37

Table 5: Wind pressures for windward, leewo	ard and uplift displayed for the North-South direction.
---	---

Table 6: Other factors used for wind determination (E-W direction).

V^2	8100
1	1
kd	0.85
kzt	1
G	0.89
L/B	1.44

Table 7: Wind story shears displayed for the (E-W) direction.

Forces	B [ft]	pw+pl	H [ft]	Total Force
S1	78.2	18.42	7.83	11.3
F2	78.2	18.42	16.875	24.3
F3	78.2	19.86	14.295	22.2
F4	78.2	20.39	10.5	16.7
F5	78.2	20.86	10.5	17.1
F6	78.2	21.23	10.5	17.4
F7	78.2	21.64	10.5	17.8
F8	78.2	22.12	10.5	18.2
F9	78.2	22.27	10.5	18.3
F10	78.2	22.55	10.5	18.5
F11	78.2	22.76	10.5	18.7
F12	78.2	23.02	10.5	18.9
F13	78.2	23.30	10.5	19.1
F14	78.2	23.48	12.125	22.3
FPD	78.2	23.67	7	13.0
FPD	78.2	23.67	9	16.7
FR	78.2	24.05	13.885	26.1
FER	78.2	24.23	5.01	9.5
			[kip]	326.0

Seismic Load Determination

Seismic loads are calculated in the following section using ASCE 7-05, chapters 11 &12.

Figure 3: Seismic design criteria based on exact site location (Courtesy http://ehp2earthquake.wr.usgs.gov)

1	MOTE BOOK SUB A	SEISMIC LOADS	JESSE B				
	SEISMIC LOADS						
8	CARLTION H. L.2.] STRUCTURE NOT EXEMPT						
	ETROM ORALINGE SIT	E CLASS C					
	[SECTION ILES] SAT	0.2693 SMS=03233 0.0603 SMS=0.1013	Sas=0.2169 Sas=0.0669				
		CLASS C, OCC. CAT II - ELF					
	[TABLE 12.2-1] ASSU	ME ESSENTRIL BRACE FRAMES	TAKE MASORITY OF LOAD				
	ORDIN	ARY STEEL CONCENTRICALLY B	RACED FRAMES				
		3.25 2 = 2.0					
	ETABLE ILS -] I_=1.0	, CU= 1.7 [TABLE D.8.1]					
	EEQNILE 73 Ta=G	hn" where: C+=0.03 x=0.75 h_=191'					
	Tox= (0.03)(1910-15)=1.546					
	[FROME 22-15] TLEGA	$ \rightarrow T_{\alpha} < T_{L} :: \begin{array}{c} C_{S} \leq \frac{3\alpha s}{\sqrt{2}} = \frac{\alpha}{2} \\ f_{11} \approx 4 \end{bmatrix} $	(3p) = 0.047 7 0.01 √ [1280]				
		(1,00) (1,00) (1,00) = 339,14					
	[BQ.N 12.8-11] Fro	CueV					
	SEE SPREADSHI	EET FOR COMPLETE RES	лтз				

Story	Floor Area [sq.ft.)	Floor Load [psf]	Snow Load (20%) [psf]	Trib. Wall Height	Building Perimeter	Wall Load [psf]	Weight	Parapet	Mech/Misc	Total Floor Weight
1	8050	95		7.83	381.8	27.5	846961.1			846961
2	9770	95		16.88	381.8	27.5	1105382	1020	44928	1151330
3	5925	95		14.3	381.8	27.5	713017.9	1909		714927
4	5925	95		10.5	381.8	27.5	673119.8			673120
5	5925	95		10.5	381.8	27.5	673119.8			673120
6	5925	95		10.5	381.8	27.5	673119.8			673120
7	5925	95		10.5	381.8	27.5	673119.8			673120
8	5925	95		10.5	381.8	27.5	673119.8			673120
9	5925	95		10.5	381.8	27.5	673119.8			673120
10	5925	95		10.5	381.8	27.5	673119.8			673120
11	5925	95		10.5	381.8	27.5	673119.8			673120
12	5925	95		10.5	381.8	27.5	673119.8			673120
13	5925	95		10.5	381.8	27.5	673119.8			673120
14	5925	95		12.125	381.8	27.5	690181.4			690181
Penthouse Deck	5925	95		7	381.8	15	602964			602964
Penthouse	5925	95		9	381.8	15	614418			614418
Roof	1250	138	3.6	13.87	328	15	245240.4	11480	2000	258720
Elevator Roof	400	68	3.6	5.01	68	15	33750.2	680	50000	84430
*included 3psf fo	*included 3psf for weight of steel and extra allowances for pool, mech equip & fitness						Total Bu	uilding We	ight [kips]	11695

Table 6: Floor-by-floor breakdown of total bu	ouilding mass for AC Hotel Philadelphia.
---	--

Table 7: Seismic story shears displayed for both orthogonal directions.

Story	hx [ft]	wx [kip]	wxhx^k	Cvx	Fx	Vx
Elevator Roof	191.0	84.4	3079641.2	0.03	8.5	8.5
Roof	181.0	258.7	8475270.7	0.07	23.4	31.9
Penthouse	163.3	614.4	16374105.6	0.13	45.2	77.1
Penthouse Deck	163.0	603.0	16021107.0	0.13	44.2	121.3
14	149.3	690.0	15370138.1	0.13	42.4	163.7
13	138.8	673.1	12958226.7	0.11	35.8	199.4
12	128.3	673.1	11071190.9	0.09	30.5	230.0
11	117.8	673.1	9332573.6	0.08	25.8	255.7
10	107.3	673.1	7742374.8	0.06	21.4	277.1
9	96.8	673.1	6300594.6	0.05	17.4	294.5
8	86.3	673.1	5007233.0	0.04	13.8	308.3
7	75.8	673.1	3862289.9	0.03	10.7	319.0
6	65.3	673.1	2865765.3	0.02	7.9	326.9
5	54.8	673.1	2017659.3	0.02	5.6	332.4
4	44.3	673.1	1317971.9	0.01	3.6	336.1
3	33.8	714.9	814315.8	0.01	2.2	338.3
2	15.7	1151.3	282339.7	0.00	0.8	339.1
1	0.0	847.0	0.0	0.00	0.0	339.1
	Σ	11694.7	122892798.1	1.0		
*k=2 b/c period is >0.5s						
V=	339.1					

Typical Bay

Bays sizes vary within AC Hotel Philadelphia, therefore, an average size bay was selected for consideration. Due to the fact that the chosen bay is guest rooms, loads are based off private occupancy.

consideration (B8 & C8)

Member Spot Check

 NOTE BOOK SUBMISSION B TYP. MEMBER SPOT CHECK GIRDER-SLAB	18
CALCS DETERMINED USING THE GIRDER -SLAB SYSTEM LRED DESIGN GUIDE V3.	
INPUT:	
D-BEAM SPAN=24'	
TRIB WIDTH= 17.5'	
SLAB THERESS= 8" [S.104]	
PRECAST SLAB WT = 58 PSF [P& 9 OF DG]	
GROUT WT = 140 PCF	1
ADD'L COMPOSITE OL (2" CONCRETE TOPPING)= 2/12(150)=25PSF	
PARTITION LL = 109SF	
FLOOR LL = 40 PSF	
USE REDUCED LL? -> YES	1
CAMBER (OPTIONAL) → DES" B/C ON PLAN DB BX61 HAS CAMBER=1.25"	
	4
RESULTS: ASSUME COMPOSITE SYSTEM	1
TRY: OB 8K45, DB 8K57 & OB 8K61 (USED ON PLANS)	1
DB 8×45 $\rightarrow \phi M_n = 216.6 > M_u = 212.9 kFT \sqrt{100}$	
$OV_n = S8.2k > V_U = 35.5k \sqrt{10}$	
ALL=Q41" < 4/360=0,8" √	
DB 8x57 $\rightarrow \phi M_{W} = 297.2 \text{ kr} \rightarrow M_{U} = 214.4 \text{ k} \text{ FT} \sqrt{10}$	
ØVN=72.6k > VJ=35.7k √	
BLL= 0.34" < 4/360= 0.8 " √	
DB 8x 61→ ØNN= 298.4KFT>ML=214.CK.FT 1	
ØNN = 75.9k > Vu+ 35.8K J	
Dut= 0.34" 2 4/360=0.8" 1	
SMILLER MEMBERS ARE SUFFICIENT, HOWEVER DB 8261 WAS PROBABLY CHOSEN FOR ITS EXTRA CAPACITY	1

•

JESSE C BORDEAU

.

TYP. MEMBER SPOT CHECK CAM. NOTEBOOK SUBMISSION B 20 DETERMINE MAX MOMENT: FLOOR FLOOR DL=112PSF 04.04 = 27.5 PSF x 10.5 FT = 289 PLF LL = 100PSF - ATYPRIN = 24x17.5=420FT" .: REDUCTION ALLOWED L:= 100(0.5) . 50PEF WU= 1.20L+1.6LL = 1.2 (112)+1.6(100) · 294 PSF(17.5/2) =2.576 PLF+1.2(289) = 2923 PLF = 292 KLF Mu = wult = (2.92)(242) = 210K-FT DETERMINE MOMENT CAPACITY: ZQN=12 STUDS → 6/SIDE → 6(21.5) = 129K CONTROLS Ts = AsFy= (10.6)(50) = 530k ZQN < TS & CC .: PARTULLY COMPOSITE Cc=0.85Fcbergt=0.85(4.5)(36)(8)=1102k a= <u>ZQN</u> = <u>129</u> = 0.94" Y1=+-== 8-9===7.53: PNA IN CONCRETE ASFY- ZQN= 2Fybex $y_1 = x = \frac{A_6F_V - 2Q_N}{2F_V b_F} = \frac{530 - 129}{2(50)(7)} = 0.57''$ MN=Ts(4)+ZQN(+-4)-2Fy.bf.x(4) = 530(159/2)+129(7,53)-2(50)(7)(0.57)(0.57/2) = 423 k FT OMN = 0.9 (423)=381. K.FT > 210 K.FT .: WIG x36 OK SO FAR → CHECK A

MOTEQuox Sugargesion B TYP. MEMBER SPOTCHECK CONT. CHECK D'S: DASED ON DU3, LIMIT Dut USING SOZ OF UNREDUCED LL TO 4/360 w/MAX OF I" Datable 5 wheth 4 = $5(\frac{100005}{100})(244) \times 1728 = 0.29^{\circ} < \frac{1}{560} = 0.8^{\circ} < 1^{\circ} \sqrt{1000}$ (TABLE 4-1] WIGK36 = $1x = 448in^{\circ}$ [TABLE 4-1] WIGK36 = $1x = 448in^{\circ}$ [TABLE 320] WICK36, $1x = 7 \Rightarrow 1_{10} = 1620in^{\circ}$ $\Delta_{LL} = 5\frac{Weith}{384EI_{10}} = 5(\frac{1.00}{29})(244) \times 1728 = 0.46^{\circ} < 0.8^{\circ} \sqrt{1000}$ $\Delta_{DL,WC} = 5\frac{Weith}{384EI_{10}} = 5(\frac{1.005}{29})(244) \times 1728 = 0.46^{\circ} < 0.8^{\circ} \sqrt{10000}$ $\Delta_{DL,WC} = 5\frac{Weith}{384EI_{10}} = 5(\frac{1.005}{29})(244) \times 1728 = 0.60^{\circ} < 0.8^{\circ} \sqrt{10000}$ $\Delta_{DL,WC} = 5\frac{Weith}{384EI_{10}} = 5(\frac{1.005}{29})(244) \times 1728 = 0.60^{\circ} < 0.8^{\circ} \sqrt{10000}$ $\Delta_{DL,WC} = 5\frac{Weith}{384EI_{10}} = 5(\frac{1.005}{29})(244) \times 1728 = 0.60^{\circ} < 0.8^{\circ} \sqrt{100000}$ MOL,WC = 100 + 5 = 100795F4.05785F

IN SUMMARY, TYP. DB 8x61 & WIGX36 IS ADEQUATE FOR STRENGTH & SERVICABILITY

Со	lumn Loa	ad Spo	ot Chec	k			
	NOTEBOOK	SCBMISSION B	COLUM	V LOAD-SPOTCHI	CK INTERIOR C	LOLUMN 22	
	INTERIOR COLUMN C8 & EXTERIOR COLUMN B8						
	COLUMN SIZES:						
		FLOOR	Bg	68			
		1.5 (PENTHOUSE)		~14x43			
		12-14	WIZXYO	W 14x61			
		9-11	WIRKED	WIYXLI			
		6-8	W12X58	W14x74			
	VERIFY LOADS	3-5	W12x72	W14x90			
	INTERIOR FOR COL		TRIB ARE	A/FLOOR = 24	18.75' =450FT		
	[TABLE 4-2] ASCE 7-05: KIL=4 FOR INTERIOR BEXTERIOR COLUMNS						
- -	[S.001] TYP. FLOOR → REDUCIBLE ROOF → NOT REDUCIBLE						
	$L = L_0 \left(0.25 + \frac{15}{1 \text{KuAr}} \right) = 50 \left(0.25 + \frac{15}{\sqrt{(4)(450)}} \right) = 30.2 \text{PSF}$						
	15TH FLOOR (COOLING)						
	DL = 148PSF(450) = 66600 + +2000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 68600 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +20000 + = 686000 + +200000 + = 686000 + +200000 + = 686000 + +200000 + = 686000 + +200000 + +200000 + +200000 + +200000 + +200000 + +200000 + +200000 + +2000000 + +200000 + +200000000						
	3RO - 14TH FLOOR						
	DL= 98 PSF (450) = 44100 # LL= 30.2PSF (450) = 13590 #						
	DL= 68600+12(44100)+(16.75')(43PLF)+(63')(619LF)+B1.5)(749LF)+B1.5)(90) = 606K						
	LL= 1(13500)+12(13590)=177k						
_	Pu=1.20L+1.6Lh+1.05L=1.2(606)+1.6(177)+1.0(8.1)=1019K						
	[TABLE 4-1] WI4X90 → KL=10.5' → OPN=1095K >1019K .: WI4X90 SUFFICIENT						
				ς			

al contesta debiti des calcular	NOTEBOOK SUB B COLUMN LOAD SPOTCHECK EXTERIOR COLUMN	23
Â	EXTERIOR COLUMN FOR COLUMN BS: TRIBAREA/FLOOR · (175)(24)=210 Ft² 2400Ft* .: CANT REDUCE EXTERIOR WALL LOAD = 289 PLF (24')= 6940#/FLOOR ISTH FLOOR	
	$DL = 9895F(240) = 20580 + 6940 = 27520 #$ $L_{Poor} = 3095F(210) = 6300 #$ $SL = 1895F(210) = 3780 #$ $\frac{3^{R0} - 14^{14}FLOOR}{DL = 98(210) + 6940 = 27520 #$ $LL = 50(210) = 10500 #$	
	DL = 13(2-7520)+ (16.75)(4096F)+(31.5)(4096F)+(31.5)(5096F)+(31.5)(5289F)+(31.5)(228F) = 366 k	
_	LL= 1(6300)+12(10500)=133k	
	Pu=1.2(366)+1.6(133)+1.0(3.78)= 656 k	
	LTABLE 4 - 1] W12x72 → KL=10.5' → &Pw= 834 K>656K .: W12x72 & FICIENT	
	AFTER ANALYSIS, BOTH THE INTERIOR & EXTERIOR COLUMNS ARE SUFFICIENT FOR GRAVITY LOADS	
~		

Alternative Systems

During my analysis, three framing systems were examined:

1. Non-Composite Steel Framing

- 2. Composite Steel Framing
- 3. Hambro D-500 Composite

Alternative System 1: Non-Composite Steel Framing

NOTEBOOK SUBMISSION B ALTERNATIVE SYSTEM 1 NON-COMPOSITE STEEL FRAMING 24

25

EXTERIOR : DLWAL = 2.89 PLF

,

WU= 1.2(59)+1.6(50)= 151 PSF (5.80)= 441 PLF + 1.20.59PLF)= 0.79 KLF

O.79 KLF < O. SOKLF : WIZXIB IS SUFFICIENT ((EXTERIOR) (INTERIOR)

	NUTEROOK SUBMISSION B ALTERNATIVE SYSTEM #1 NON-COMPOSITE FRAMING 2	6
al shift and and a strike of the	CHECK MEMBER SELF-WEIGHT:	
	WIZX16 -> IGPLF = 2.8 CSPSF ALLOWANCE :: USE WIZX16 @5.83' O.C. 5.83 PT	
	SELECT GIRDER: ± LOAD FROM AUT BAYS	
	SPAN=17.5' POINT LOAD ON GIRDER(PL)= \$ (0.58 KLF)(24)(2) = 21K SPACING=24'	
	Pr Pr Assume GIRDER SW= Stor(17.5') WSw=0.09NLF 4 = 5.83' 5.83' 5.83' 7 4 = 5.83' 5.83' 7 4 = 5.83' 5.83' 7 4 = 5.83' 5.83' 7 5 = 5.83' 7	
	[TABLE 3-23] CASE 9: 2 EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED]	
	$M_{MM} = (P_{U} \cdot \alpha) + \frac{U_{U}L^{2}}{8} = (21)(5.83) + \frac{0.09(17.5^{2})}{8}$	
	= 126 K.FT	
	TRY W12x26: Ix=204:n4, ØMn= 140K·FT>126 K·FT √	
	CHECK D:	
	$\Delta_{LL} = \frac{P_{LL}L^3}{28EI} = \frac{\left[(50)(5.83)(24)\right]/1000}{28EI} = 0.39"$	
	L = 17.5(12) =0.583">0.79" . GIRDER IS ADEQUATE	
	HEMBER SW: 26/17.5= 1.49 4 5 . GIRDER SW IS CONSERVATIVE	
	USE WIZXIG BEAMS @ S.83 O.C. & WIZXZG GIRDER	
	& SAME DEPTHS ARE USED FOR CONNECTION PURPOSES	
<u>,</u>	NOW I WILL LOOK INTO SWITCHING THE ORIENTATION OF THE BEAMS & GIRDERS IN ORDER TO DETERMINE THE OPTION THAT MINIMIZES STEEL	

B ALT SYSTEM #1 NON-COMPOSITE FRAMWG 2-7

NOTEBOOK SUB B

SPAN= 17.5' BEAMS SPAN SHORTER DIRECTION SPACING= 8'

LL=40PSF +10=50PSF

FROM VULCRAFT CATALOG

USE SAME DECKING 1.5C20, 2.5 NWC TOPPING

 $\omega_{0} = 151 \text{PSF(8')} = 1208 \text{PLF} = 1.21 \text{ KLF} \rightarrow W_{\text{LL}} = (\underline{s0})(\underline{8}) \cdot 0.40$

Mu= (1.2.1)(17.52) = 46KFT

 $\begin{array}{c} \left[\text{THBLE 3-2} \right] \text{TRY } & \text{IOXI2} \rightarrow \text{OM}_{0} = 97.5 \text{ KFT} > 46 \ \sqrt{} \\ & \left(\frac{1}{12} \cos(017) \right) \\ & \text{I}_{X} = 53.65 \text{ in}^{Y} \\ & \text{I}_{X} = 60.583 \text{ in}^{Y} \\ \end{array}$

CHECK D'S:

CHECK MEMBER SW:

NOTEBOOK SUB B ALT SYSTEM 1 NONCOMPOSITE 29

DETERMINE OPTIMAL BEAM CONFIGURATION:

WEIGHT OF STEEL

BEAMS LONG DIRECTION:

(4 BEAMS) (15"/FF) (24') + (261ROERS) (26"/FT) (17.5') = 2446."

BEAMS SHORT DIRECTION ;

(4 BEAMS)(124/FT)(17.5') +(2 GROERS)(304/FT)(24')=2280+

OPTION 2:

ALTHOUGH OPTION 1 IS SLIGHTLY HEAVIER IN OVERALL STEEL, BEAM & GIRDER DEPTH IS EQUAL, SMPLIFYING CONNECTIONS : CHOOSE OPTION 1.

Alternative System 2: Composite Steel Framing

DETERMINE POSSIBLE BEAM SIZES : [TABLE 3-A]

$$\begin{split} & \forall |0X|2 \rightarrow \sum Q_N = 115 \rightarrow 115/17.2 = 6.68 \rightarrow 7.X_2 = 14 \text{ Study BEAM} \\ & \forall |0X|5 \rightarrow \sum Q_N = 83.8 \rightarrow 83.8/17.2 = 4.87 \rightarrow 5.X_2 = 10 \text{ Study BEAM} \\ & \lor |0X|7 \rightarrow \sum Q_N = 62.4 \rightarrow 62.4/17.2 = 3.63 \rightarrow 4.X_2 = 8 \text{ STUDS/BEAM} \\ & \lor |0X|7 \rightarrow \sum Q_N = 70.3 \rightarrow 70.3/17.2 = 4.09 \rightarrow 5.X_2 = 10 \text{ STUDS/BEAM} \\ & \lor |0X|2 \rightarrow \sum Q_N = 81.1 \rightarrow \frac{51.1}{17.2} = 4.72 \rightarrow 5.X_2 = 10 \text{ STUDS/BEAM} \\ & \lor |0X|2 \rightarrow \sum Q_N = 81.1 \rightarrow \frac{51.1}{17.2} = 4.72 \rightarrow 5.X_2 = 10 \text{ STUDS/BEAM} \\ & \lor |0X|2 \rightarrow \sum Q_N = 81.1 \rightarrow \frac{51.1}{17.2} = 4.72 \rightarrow 5.X_2 = 10 \text{ STUDS/BEAM} \end{split}$$

CHECKECONOMY

V10122- 22(24)+10(10)= 628+

CHECK ASSUMPTION:

$$\alpha = \frac{\Sigma Q_N}{0.85 \text{ fcbeff}} = \frac{115}{0.85(4.5)36} = 0.84^{\circ} < 1^{\circ} ; Y_2 = 3.5^{\circ} \text{ is consERVATIVE}$$

CHECK UNSHORED LENGTH:

Notebook Submission B

NOTEBOOK SUB B ALT. SYSTEM 2 COMPOSITE 32
SELECT WIDNIS
$$\rightarrow 0.1_{M_{2}} = 60 \times FT > 51 \times FT J$$
; CONTINUE W/ WIDNIS
FOR WIDNIS $\rightarrow 1_{N_{2}} \leftarrow 60 \times FT > 51 \times FT J$; CONTINUE W/ WIDNIS
FOR WIDNIS $\rightarrow 1_{N_{2}} \leftarrow 60 \times FT > 51 \times FT J$; CONTINUE W/ WIDNIS
FOR WIDNIS $\rightarrow 1_{N_{2}} \leftarrow 60 \times FT > 51 \times FT J$; NEED TO UPSIZE $\frac{9}{2} \times \frac{100}{2} \times \frac{1$

.

. 1

NOTEBOOK SUB B ALT. SYSTEM 2 COMPOSITE 33

DETERMINE CAMBER:

SINCE DWCK YOUG . NO CAMBER NEEDED

CHECK EXTERIOR BEAM BIC ADDL EXTERIOR WALL WEIGHT

LL=40PSF +10=50PSF DL= 56PSF DLwww=289PLF

1.40L=1.4(56× 8.75)+1.4(289)= 748 PLF

1.204+1.611=1.2(56、)+1.2(289)+1.6(50)=721 PLF

FROM PREV PG: OM, FOR WIDER 97.5K.FT > 54 K.FT : WIDER OK TO USE FOR EXTERIOR BEAM

CHECK ALL:

[TABLE 3-20] ILB FOR WIDX22= 214 in"

	NOTEBOOK SUB B ALT. SYSTEM 2 COMPOSITE	34
-	DETERMINE GIRDER DESIGN:	
	3P4N=17.5' SPACING=24' FROM PG 27- WL= (0.131 KLF	
	8.75' 8.75'	
	Pu= (0.14)(2x2)(17.5')= 62k	
	$M_{U} = \frac{PL}{4} = \left(\frac{G2}{4}\right) \left(\frac{17.5}{4}\right) = 270 \text{ k-FT}$	÷
	Assume a=1" :: Y== 4-0.5=3.5"	
	$ (14x_{26}) \rightarrow \Sigma Q_{N} = 279 \rightarrow 279/17, 2 = 17x_{2} = 34 \rightarrow \Sigma Q_{N} = (2)(16.5)(14,6) + 1(17,6)$	= 499
	W14x30→ ZQw=183→183/17.2=11x2=22→2Qw=(2)(5.5×(14.6)+12(17.6)	±372_
	W14x34→ IQN=175→175/172= (1x2=22→5QN=(2)(5.5)(14.6)+12(17.6)=	372
<u>_</u>	WIGX26 - 2QN= 96 -> 96/17.2= GX2=12 CHECK & ASSUMPTION:	
	$b_{\text{EFF}} = \begin{vmatrix} \frac{SPAN}{8} & \frac{17.5(12)}{8} = 26.3 \times 2 = 52.6 \\ \frac{SPAN}{8} & \frac{17.5(12)}{8} = 36 \times 2 = 72 \\ \text{Min} & \frac{24(12)}{7} = 36 \times 2 = 72 \\ \end{pmatrix} \text{BY EXTERIOR}$	-
	Q = <u>IQN</u> = <u>183</u> = ().91 ">1" : OK V 0.85 f'c beff = 0.85(45)(52.6)	
	CHECK UNSHORED LEMOTH: 1344	
	1.402= 1.4 (56) (24)+1.4(26)= 1918 PLF	21 Anno 11
	1.201+1.611=1.2(1344+2.6)+1.6(\$0)= 1724 PLF	
~	$M_{0} = \frac{1.92(17.5)^{2}}{8} = 73.5 \text{ k} \text{ FT}$	
-	[[TABLE 3-2] 2/14230→ ØM~=177 KFT >73.5 Ix=29(1)~	

JESSE C BORDEAU

.

NOTEBOOK SUB B ALT SYSTEM 2 COMPOSITE 35

CHECK AWE:

Wwc. waven= 56(17.5)+30 = 1010, PLI=

$$\Delta_{wc} = \frac{S(1.01)(17.5)^{w}(1728)}{(384)(28000)(245)} = 0.30''$$

$$\Delta_{wc} = \frac{1}{(384)(28000)(245)} = 0.88'' > 0.3'' \therefore 0k/$$

CHECK ECONOMY:

W14×36→26(17.5)+34(10)=795#

W 14x 30 - 30(17.5)+ 22(10)= 745" : SELECT WI4X30 [22]

IN SUMMARY:

USE 2VLI20 DECKING, 2" NWC TOPPING (4" TOTAL)

	rebook sub			MPOSITE US	Volucian (03)
60	MPARE COMP	OSITE VS. NON - CO	MPOSITE DESIGNS:		
		COMPOSITE	NON COMPOSITE		
	WENDER	(3) WIOX22[10]	(4) UILXIG		
	MEMBERS	(2) VI4X 30[22]	(2) 112226		
	WEIGHT	2634#	24464		
	DFCK	2VLI20,2"NW TOPFING (4" TOTAL)	1.5C20,2.5"NW TOPPING (4" TOTAL)		
	SHORING	NO	NO		
	TOTAL DEPTH	18"	14"		
	-	J			
	SHALLOW FLOOR -FL	FR, ALLOWING FO	EREFORE I WULD		
	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
22	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
2	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
2	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
3t	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
2	SHALLOW FLOOR -FL	OOR HEIGHT. TH	EREFORE I WULD		
28	SHALLOW FLOOR -FL	OOR HEIGHT. TH	X A GREATER EREFORE I WAND POSITE SYSTEM.		
3t.	SHALLOW FLOOR -FL	OOR HEIGHT. TH	X A GREATER EREFORE I WAND POSITE SYSTEM.		
2	SHALLOW FLOOR -FL	OOR HEIGHT. TH	X A GREATER EREFORE I WAND POSITE SYSTEM.		
28	SHALLOW FLOOR -FL	OOR HEIGHT. TH	X A GREATER EREFORE I WAND POSITE SYSTEM.		
2t	SHALLOW FLOOR -FL	OOR HEIGHT. TH	X A GREATER EREFORE I WAND POSITE SYSTEM.		

Alternative System 3: Hambro D-500 Composite Girder

NOTE BOOK SUB B ALT. SYSTEM 3 HAMBRO D-500 37

SECTION WI ALONG COLUMN LINE 8:

SPAN GIRDERS IN LONG DIRECTION : SPAN=24'

TYP. JOIST SPACING= 4114"= 4944" TO ACCOMODATE 48" PLYWOOD FORMS

FROM (TABLE 6]: D500 HAMBRO CLEAR SPAN TABLES:

CHOOSE RESIDENTIAL, t= 3" ... LL=40 PSF, OL=65 PSF

SPAN= 24' < 25' (FROM TABLE) .: CONSERVATIVE → JOIST DEPTH =10"

MIN ts=2.5"<3": OK √ ASSUME JOIST WEIGHT (RESIDENTIAL)=1.5PSF

F'C = 3000 PSI, FY= 50K61

Dur - 4360

DETERMINE DESIGN MOMENT:

ACCORDING TO PG 2. HAMBRO DG: LOAD COMBO = 1.40L+1.7LL

۲۵۵۵ ۲۹۲۲ ((SH.5) + 1.7(50)= 179 PSF = 0.179 KSF(24')= 4.3 KLF

+MAAK(Ext) =
$$\frac{WL_{1}^{2}}{11} = \frac{(4.3)(\frac{31.25}{12})^{2}}{11} = 2.7 \text{ k-FT}$$

$$M_{MAX(EXT)}^{3} = \frac{(4.3.)(\frac{31.125}{12})^{2}}{10} = 2.9 \text{ k·FT}$$

$$+M_{Max}(1wt) = \frac{VL_{2}^{2}}{16} = \frac{(4.3)(\frac{49.5}{12})^{2}}{16} = 4.6 \text{ k} \text{ F1}$$

 $\begin{array}{l} (\text{EXTERCA}) (INTERVOR) \\ (\text{EXTERCA}) (INTERVOR) \\ (\text{INTERVOR}) \\ (\text{INTERVOR) \\ (\text{INTERVOR}) \\ (\text{INTERVOR) \\ (\text{INTERVOR}) \\ (\text{INTERVOR) \\ (\text{INTERVOR}) \\ (\text{INTERVOR) \\ (\text{INTERVOR$

CONCENTRATED LL REQUIREMENTS:

[IABLE 2] HAMBRO DU: ASSUME MIN CONCENTRATED LOAD=1000# FOR RESIDENTIAL

[TABLE 3] HAMBROOG: 1000 + < 2000 + MIN

. PROVIDE SINGLE LAYER MESH THROUGHOUT BL S,= 31.125448"

DEFLECTION CHECK ;

 $\begin{bmatrix} PG_{2} \end{bmatrix} \underbrace{HAMBRO} DG \rightarrow \underbrace{HAMBRO} 2Y_{2}^{*} \underbrace{SLAB} / \underbrace{Y'1}_{A}^{*} \underbrace{SPAN} \\ \exists_{c} = \frac{i_{2}(2,c^{3})}{i_{2}} = 15.6in^{4} \rightarrow \frac{D}{L} = \frac{L^{3}}{I_{c}} = \underbrace{4.1^{3}}_{15.c} = 4.4$ $NORMAL 7i_{2}^{*} \underbrace{SLAB} / 20^{i} \underbrace{SPAN}$

$$\mathbb{I}_{c} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{20^{3}}{12} = \frac{1}{12} = \frac{20^{3}}{122} = \frac{1}{12} = \frac{1}{12}$$

System Comparison

Table 8: Several different floor systems are compared by various factors for AC Hotel Philadelphia.

Floor System Comparison							
Criteria	Girder Slab (Existing)	Non-Composite Steel	Composite Steel	Hambro D-500 Composite			
System Info							
Total Depth	10"	16"	18"	13"			
Fire Rating	3hr	2hr	2hr	2hr			
2 hr Fire Rating?	yes	yes	yes	yes			
Lbs/ft^2	83	50	46	41			
Cost/ft^2	\$16.01	\$11.17	\$12.04	\$8.38			
Vibrations	minimal	likely	likely	very likely			
Formwork	no	no	no	yes			
Considerations							
Pros	Rapid construction & assembly (premanufactured), underside can be left unfinished, floor design flexibility	Lightweight	Lightweight, increased stiffness,	Lightweight, reusable formwork & rollbars, increased rigidity from composite, plenums allow for MEP systems			
Cons	Heavy, expensive	Large total depth	Largest total depth	Formwork needed, vibrations			
Feasible?	yes	yes	yes	yes			

Lateral Analysis

The scope of the analysis for Notebook Submission C includes an in-depth lateral force evaluation of 230 N. 13th St. A 3D model was created in RAM Structural System to model the lateral force resisting elements of the structure and examine how the forces are distributed to the lateral elements. Results from RAM were compared to calculations computed by hand to verify if the values make sense. Appendix B contains more relevant tables and visuals for Notebook Submission C that are not included in the report.

Figure 5: 3D model of AC Hotel Philadelphia created in RAM Structural System. Certain elements of the building that do not have an impact on my investigation were not modeled.

Figure 6: 3D representation of AC Hotel Philadelphia provided by Holbert Apple Associates.

Lateral Resisting Elements

The lateral system for 230 N 13th St. is made up of eight braced frames spanning 13' to 20' in both orthogonal directions. They are positioned in a configuration that keeps the COR towards the center of the structure which helps reduce eccentricity. Since braced frames are the most rigid steel lateral-resisting element, fewer frames are required which allows more spatial opportunities for the architects' floor layout.

Figure 7: Typical floor plan showing all of the lateral resisting elements. BF 1-5 are concentric braced frames, BF-6 is an eccentric braced frame and BF 7-8 are regular braced frames.

Modeling Approach/Assumptions/Constraints

To model AC Hotel Philadelphia, RAM Structural System was selected. The modeling process began with establishing the grid coordinates for the building as per the construction drawings. Once the grid was in place, the various floor plans within the building were modeled (Level 1, Level 2, Level 3, Typ. Level, Penthouse Level and Roof). Only columns supporting the braced frames were considered to be lateral columns, all others are gravity columns. To help simplify the model, only beams that had impact on the lateral resisting elements were modeled. It was also decided to not model the cellar level (beneath grade) because the amount of time it would have taken to model does not compare to the minimal amount it would have changed the results. Once the structure was modeled, member sizes were assigned to all of the lateral beams, columns and braced frames. Surface loads and line loads were then applied where appropriate, and mass dead loads were inserted in place of the mechanical equipment and any other substantial loads (i.e. pool on the second level). After the loads were imputed, the fixity of the members were applied. For beams and braces, a pinned connection was chosen for the major & minor axes, and fixed for torsion on each end. The columns are all fixed connections with the exception of the bottom of the columns at the base of the structure, where minor/major axes are pinned and torsion is fixed. As a way to reduce the amount of errors in the building model, the "integrity check" command was ran at least one time per floor. This made it much easier in the end since locating an error on an individual floor is much easier than finding an error within the whole building. To allow forces to be distributed into the resisting elements, nodes in RAM were released. It is important to keep some of the nodes connected, otherwise complications will arise within the program. While modeling, the following assumptions were also made for simplification:

- 6" slab edge overhang
- Dissymmetrical beam conversion (D-beams not available in RAM)
 - o DB8x37=W8x35
 - o DB8x61-W8x58
 - o DB8x65=W8x67
- Only modeled (2) stair openings & (1) elevator shaft opening
- BF-6 (3'3" on both sides)
- Beams considered rigid for frame rigidity calculations
- Diaphragm for all levels considered rigid
- Extra beams/columns inserted where necessary to avoid complications within RAM (these do not affect any output numbers)
- From the Penthouse level and above, there is a curtainwall/terracotta rain screen system, so the value of 27.5psf was reduced to 15psf for the dual system
- P-delta effects are included for RAM analysis

COM & COR

The center of mass (COM) and center of rigidity (COR) were calculated both by hand and by RAM for the typical level in the building. Both the COM & COR varied from floor-floor, but the variation was minimal, so evaluating Level 4 is a reasonable approximation for the entire structure. The following diagrams illustrate the approximate rigidities of the braced frames.

NOTEBOOK SUBRISSION C COMECOR COMERISON	40
TYP. FLOOR PLAN (LEVEL 4)	
t (07.1' t	
Cont a cont	
(0,0)	
44 HAND LALCS 53.4,39.6 46.6,53.2 • RAM OUR PUT 45.5, 44.3 46.6,51.6 • You Earlor 7.4% 6% 0% 2%	
AFTER ANALYLIMS MY REGULTS, I FOUND THAT MY COR IS NEMRLY IDENTICAL TO THE RESULTS RAM PRODUCED. I BELIEVE THE REASON MY CENTER OF MASS VARIES FROM R.A.M. B/C. RAM TOOK IMTO ACCOUNT THE MASS OF THE FLOOR MEMBERS TOO, WHILE I ONLY ACCOUNTED FOR THE MASS OF THE BRACED FRAMES.	

The values above seem reasonable because the COR was found to be in a location that lies in the middle of all of the LRE (Lateral Resisting Elements). The COM was found to be near the center of the floor which also makes sense because the floors do not contain any elements which would drastically move the COM from the middle. Detailed spreadsheets for COM and COR can be found in Appendix B.

Direct Shear & Torsional Rigidity

When analyzing how lateral loads find their way into buildings, it is important to keep in mind that load follows stiffness. To find the direct shear in each lateral resisting element, this proportional distribution of forces was applied and the results can be found below. Torsional shear takes into account the amount of eccentricity the building experiences. Larger eccentricities occur when the COR is not near the COP (which acts at the middle of the structure). In the specific case of AC Hotel Philadelphia, both hand calculations and RAM found the COR to be within one foot of the COP, which explains why the torsional shear is miniscule. Results for torsional shear can also be found below. Full results and calculations can be found in Appendix B.

ARE ASSUMED TO BE NEULIGIBLE WHICH MEANS THAT DIRECT SHEAR ON THE BUILDING WILL WATROL.

& MAKES SENSE THAT TORSIONAL RIGIDITY IS VERY LOW OUR TO THE FACT THAT COPACOR ARE EXTREMELY CLOSE.

Wind Load Comparison

Table 9 and 10 below are tabulated wind pressure values for the various levels of AC Hotel Philadelphia. Minor differences in pressures are due to the elevation they were analyzed at. Hand calculations were analyzed at each floor and RAM uses mid-floor elevations to do so. Hand calculations include the elevator roof which was not modeled in RAM. The largest variation in calculations is in the building period calculation. Hand calculations yield a building period of 1.55s compared to RAM's calculated building period of 2.46s. The reason these values vary so greatly is the fact that in ASCE7-05, section 12.8.2, it states that it is permitted to use the approximate building period, Ta, for the fundamental period, T for hand computations, while RAM actually solves for the fundamental building period.

Table 9: Tabulated wind pressures calculated by hand
for various heights

Table 10: Tabulated wind pressures calculated by RAM valuesfor various elevations.

Story	z [ft]	kz	qz [psf]	Height	Kz	Kzt	qz
Elevator Roof	191.02	1.19	20.97	ft	qLeeward (q	h) = 20.96 psf	psf
Roof	181.00	1.17	20.62	175.38	1.160	1.000	20.451
Penthouse	163.25	1.13	19.92	165.34	1.141	1.000	20.109
Penthouse Deck	163.00	1.13		148.59	1.107	1.000	19.505
14		1.11	19.56	133.59	1.073	1.000	18.921
13		1.09		123.09	1.049	1.000	18.483
12		1.06		112.59	1.022	1.000	18.018
11		1.03		102.09	0.994	1.000	17.521
10		1.01	17.80	91.59	0.964	1.000	16.986
9	96.75	0.98		81.09	0.931	1.000	16,406
8		0.96		70.59	0.895	1.000	15.768
7	75.75	0.91	16.09	60.09	0.854	1.000	15.059
6		0.87		49.59	0.809	1.000	14.255
5		0.83		39.09	0.809	1.000	13.318
4		0.78		28.59	0.691	1.000	12.180
3		0.72					
2	15.66	0.57		18.09	0.606	1.000	10.687
1	0	0.57	10.05	0.00	0.575	1.000	10.130

Applied Story Forces (N-S)

Table 11: Hand calculations showing the applied story forces in the North-South direction.

Force Level	Force [k]	
FER	13.5	
FR	36.9	
FP	23.4	
FPD	18.2	
F14	31.2	
F13	26.7	
F12	26.3	
F11	25.9	
F10	25.6	
F9	25.1	
F8	24.9	
F7	24.2	
F6	23.5	
F5	23	
F4	22.2	
F3	29.1	
F2	30.8	
F1	14.3	
Total	444.8	

Applied Story Forces (E-W)

Table 13: Hand calculations showing the applied story forces in the North-South direction.

Force Level	Force [k]
FER	9.5
FR	26.1
FP	16.7
FPD	13.0
F14	22.3
F13	19.1
F12	18.9
F11	18.7
F10	18.5
F9	18.3
F8	18.2
F7	17.8
F6	17.4
F5	17.1
F4	16.7
F3	22.2
F2	24.3
F1	11.3
Total	326.1

Table 12:	RAM outpu	t showing	the ap	oplied s	story
for	ces in the No	orth-South	n direc	tion.	

Level	Ht	Fy
	ft	kips
Roof	175.38	12.22
Penthouse Level	165.34	32.28
Level 14	148.59	37.66
Level 13	133.59	29.74
Level 12	123.09	24.12
Level 11	112.59	23.76
Level 10	102.09	23.38
Level 9	91.59	22.97
Level 8	81.09	22.53
Level 7	70.59	22.04
Level 6	60.09	21.49
Level 5	49.59	20.87
Level 4	39.09	20.08
Level 3	28.59	21.02
Level 2	18.09	28.77
		362.93

Table 14: RAM output showing the applied story forces in the North-South direction.

		-
Level	Ht	Fx
	ft	kips
Roof	175.38	7.38
Penthouse Level	165.34	20.55
Level 14	148.59	24.63
Level 13	133.59	19.42
Level 12	123.09	15.73
Level 11	112.59	15.47
Level 10	102.09	15.20
Level 9	91.59	14.91
Level 8	81.09	14.59
Level 7	70.59	14.25
Level 6	60.09	13.86
Level 5	49.59	13.42
Level 4	39.09	12.87
Level 3	28.59	13.57
Level 2	18.09	22.08

237.92

After analyzing the story forces, it is easy to see that my hand calculations yielded slightly higher forces at all elevations which results in a much larger overall force in each direction. All though my forces are off, they are proportional, therefore, the error is most likely from not distributing the pressures correctly to each floor by tributary height.

Seismic Load Comparison

Seismic load calculations varied significantly from my hand calculations to the results RAM produced. The main reason my hand calculations found a building weight much greater (approx. 3000k) than RAM is due to the fact some members in RAM were not modeled because it was not required to have a full 3D model for the assignment. Also, as noted in the wind calculations above, the building period used for hand calculations was nearly double what RAM used. With this said, AC Hotel Philadelphia was designed with a base shear of 92k compared to 84.4k from RAM which is reasonably close. If the two changes were made in the 3D RAM model, the results in Table 15 would be much closer to what they should be.

Table 15: Hand calculations showing the applied story forces in both orthogonal directions under seismic conditions.

Story	hx [ft]	Fx
Elevator Roof	191.0	8.5
Roof	181.0	23.4
Penthouse	163.3	45.2
Penthouse Deck	163.0	44.2
14	149.3	42.4
13	138.8	35.8
12	128.3	30.5
11	117.8	25.8
10	107.3	21.4
9	96.8	17.4
8	86.3	13.8
7	75.8	10.7
6	65.3	7.9
5	54.8	5.6
4	44.3	3.6
3	33.8	2.2
2	15.7	0.8
1	0.0	0.0
Total	V =	339.2

Table 16: RAM output showing the applied story forces in both orthogonal directions under seismic conditions.

Level	Ht	Fx
	ft	kips
Roof	175.38	12.00
Penthouse Level	165.34	14.84
Level 14	148.59	11.87
Level 13	133.59	9.54
Level 12	123.09	8.09
Level 11	112.59	6.80
Level 10	102.09	5.60
Level 9	91.59	4.53
Level 8	81.09	3.58
Level 7	70.59	2.72
Level 6	60.09	1.98
Level 5	49.59	1.36
Level 4	39.09	0.85
Level 3	28.59	0.40
Level 2	18.09	0.24
		84.42

Controlling Load Case

After analyzing both wind and seismic forces on the building, wind was determined to be the governing load case. Hand calculations show much higher values for seismic conditions, but knowing why the values vary so greatly from RAM verify that wind will control. This was also verified by looking at the overall geological location of the build site (Philadelphia, Pa), and realizing that wind would most likely control on the East coast. Therefore, the following checks will use values from wind conditions to verify the lateral systems and the members that comprise it.

Lateral System Checks Allowable Drift

Allowable drift = $\frac{h}{400} = \frac{191 * 12}{400} = 5.73$ "

Actual maximum drift (from RAM output) = 4.74" @ Roof Level < 5.73" therefore ok $\sqrt{}$

Figure 8: Deflected shape under wind conditions in the N-S direction.

In ASCE7-05, Figure 6-9, design wind load cases are presented. Of the four cases, case 1 controlled which is a "full design wind pressure acting on the projected area perpendicular to each principal axis of the structure, each axis considered separately." In RAM, this is equivalent to wind case 2 which analyzes the building in the N-S direction. This makes sense because the building is shallower in the N-S direction, allowing larger overall drift values. The largest drift due to seismic activity is only 1.71" at the roof level which also confirms that wind controls over Seismic.

361311	inc.		Table 17: Displ	lacements due to wir	nd for the Roof le	evel of AC
	Table 18: Possil	ble load cases considered in RAM.	Level: Roof, Dia	Hotel Philadel	ohia.	
LOAD	CASE DEFINITI	ONS:	Center of Mass	s (ft): (52.81, 49.55)		
W	1 Wind	Wind_IBC09_1_X	LdC	Disp X	Disp Y	Theta Z
W	2 Wind	Wind IBC09_1_Y		in	in	rad
W	3 Wind	Wind IBC09 2 X+E	W1	3.21159	0.15999	0.00214
W		Wind IBC09 2 X-E	W2	-0.02567	4.74404	-0.00025
			W3	2.29485	0.02972	0.00040
W		Wind_IBC09_2_Y+E	W4	2.52254	0.21027	0.00281
W	6 Wind	Wind_IBC09_2_Y-E	W5	0.19036	3.72507	0.00204
W	7 Wind	Wind_IBC09_3_X+Y	W6	-0.22886	3.39099	-0.00242
W	8 Wind	Wind IBC09 3 X-Y	W7	2.38944	3.67803	0.00141
W	9 Wind	Wind IBC09 4 X+Y CW	W8	2.42794	-3.43803	0.00179
	10 Wind	Wind IBC09 4 X+Y CCW	W9	1.54949	2.56553	-0.00152
			W10	2.03467	2.95151	0.00364
W		Wind_IBC09_4_X-Y_CW	W11	1.57837	-2.77151	-0.00124
W	12 Wind	Wind_IBC09_4_X-Y_CCW	W12	2.06355	-2.38554	0.00393

To keep values comparable, inter-story drifts were evaluated for the same wind case (case 1) that controlled the design (N-S direction). Note that the actual drifts are compared to h/400 drift for all building level elevations

Figure 9: Actual drift compared to allowable drift (h/400) for various elevations of AC Hotel Philadelphia

Level	Elevation [ft]	Total Drift @ Particular Level [in]	Allowable Drift (h/400) [in]	Acceptable Drift?
Roof	181	4.74	5.43	yes
Penthouse	163	4.44	4.89	yes
14	149.25	3.87	4.48	yes
13	138.75	3.35	4.16	yes
12	128.25	2.99	3.85	yes
11	117.75	2.63	3.53	yes
10	107.25	2.28	3.22	yes
9	96.75	1.94	2.90	yes
8	86.25	1.61	2.59	yes
7	75.75	1.3	2.27	yes
6	65.25	1.03	1.96	yes
5	54.75	0.77	1.64	yes
4	44.25	0.55	1.33	yes
3	33.75	0.36	1.01	yes
2	15.66	0.22	0.47	yes
1	0	0	0.00	N/A

In the table above, all of the levels meet the drift requirement of H/400.

Member Spot Check for Lateral Loads

The area under consideration is a typical level (level 4). Elements under consideration are marked. BF-1 was selected because it resists forces in the N-S direction which is the axis being considered for lateral forces, making the braces in that direction more critical.

Figure 10: Typical floor plan revealing lateral elements/locations and the braced frame being studied.

BF-1 (Column line 3, spanning B-C)

Column: W14x211

Beam: W14x26

Brace: HSS 6x6x1/2

```
MEMBER SPOT CHECKS
NOTEBOOK SUB
COLUMN CHECK:
    COLUMN C-3 ON LEVEL 4: WHX26
      P-48.8k - P DUE TO GRAVITY LOADS
     Mrx = 5.3 kft
     Mry= . O.IS kft
        At = (15.97)(11.45)=183 ft + 4400 : NOT REDUCIBLE
   DEAD LOADS:
                                   LIVE LOADS:
                                      -CORRIDUR = 100PSF JARTITIONS
    * - TYP FLOOR =9595F
     · INT. GREEN ROOF = 138PSF
                                   # - GUEST ROOM =4 OPSF +10 = SOPSF
                                   X - ROOF (GARDEN)=100PSF
    SNOW LOAD = 1895F
    CONTROLLING LOAD COMBINATION (VERIFIED W/ RAM V):1.20+1.6L+0.5LR
   PU=[12(9510)+138] +1.6(50)+0.5(100)(183Ft)=263k=Pr
       Mux=1.6(5.3) = 8.5 ftk
       Muy=1.6(-0.15)= 0.24ftk
       [STEEL MANUAL APPENDIX 7] IN BRACED FRAMES - K-1.0
              Lb=10.5' → 11' FOR STEEL MANUAL SIM PLICITY
      [TABLE 6-1] FOR WHY XHI:
        p=0.387x10"
        6x= 0.608x10 "
        by=1.2.0x10-5
        pPr=(0.387x10-3)(263)=0.102 <0.2
           pfr+bxMnx+byMry
           =0.102+(0608x10-3)(8.5)+(1.20x10-3)(0.24)=0.108<1.0 .: ACCEPTABLE
BEAM CHECK:
      LEVEL Y SPANNING FROM B-C (W14x26)
     FROM RAM: MMAK=ISIKFT
    CONTROLLING CONBINATION = 1.20+0.5L+0.5L+
     FROM RAM: FU- elibk (ON BEAM) OP- 346k
                                    OMA+= 150.75KFT
                 Mux= -7.53KFT
                 Muy= - 0.02 KFT
                                    OMny = 20.77kct
                                  May = 0.24. 8 (253 + 0.02) = 0.281 : ACCEPTABLEV
  Pc = 816 = 0.24 = HI-Ia = Pc + 8 (Ma
```

BRACE CHECK: HSS 6x6x1/2

[STEEL MANUAL TABLE 5-5] CONTROLLING LOAD CASE: 1.OW

FOR HSSGKGX1/2: YIELDING - ØPn=403k RUPTURE - ØPn = 318k

FROM RAM OUTPUT -> TOTAL STORY SHEAR & LEVEL 4=311.7K/4 FRAMES = 80 YRAME

ASSUME TENSION MEMBER RESISTS FULL LOAD

FORCE IN TENSION MEMBER - 80 K=FcosO 80=FcosSOS F=126

126 K K & 313 K EUO3 K .: BRACE IS ADEQUATE

43

A member analysis check was run in RAM which reveals whether or not member sizes are adequate under various load combinations. The code used to check the members is AISC360-05 LRFD. The results are found below.

Figure 11: RAM model displaying individual member stresses. This feature allows the user to see which members are failing under loading conditions and by how much.

The color scale to the right shows the % capacity each member is experiencing under loading, with red meaning that the member is failing. With this said, it should be noted that all of the failing members are at 101% capacity, therefore, since approximations were made during the modeling process, all members are considered adequate for analysis purposes.

Appendix A

D-Beam [®] Calculator Reference 1	fool Ver	rsion 3.1		Design Checks - Noncomposite	
(Load & Resistance Factor Design -			n)	Noncomposite Mament	OK
, -------------------------------------- - --- - -- - ----- - - - ------- - ---- - - - ------ - - - -				M _e = 108.5	
				φ ₀ M ₀ = 137.5	
LRFD (14th Ed)				Horizontal Shear Ve = 18.1	OK
				φV _e = 26.4 i	
Project Name / Job #					
D-Beam*					
D-Beam" = DI Parent Beam Yield Stress (F _v) =	50 k	si			
Top Bar Yield Stress (F _v) =		si			
Span Information D-Beam* Span =	24	•			
Composite Section Effective Width =		t		Design Checks - Full Composite	
Total Tributary Width for Load =	17.5 1	t		Floor LL Deflection Allow. $\Delta_{U_i} = L/\frac{360}{100}$	OK
Precast Slab Nominal Slab Thickness =	8 in.			Δ ₁₀ = -0.41 L/360 = -0.80	
Precast Slab Weight =		psif		Full Composite Moment	OK
Grout Unit Weight of Grout =	140	⊳/ # 3		$M_0 = 212.9$ $\phi_0 M_c = 216.6$	
Unit weight of Grout =	-40	WIS.		φ _k M _a = 216.6 Flexurel Ductility Check	ар-п: ОК
				Every/Targe intersection = 0.010994	
				2z _y = 0.003448 Shear	OK
Unfactored Loads				V _e = 35.5	kips
Basic Dead Load (D-Beam* + Slab + Grout) = Add1 Composite Dead Load (e.g. topping) =		psf psf		φ _i V _e = 58.2 i	kips
Partition Live Load =		por			
Basic Floor Live Load =		psf			
Consider Floor Live Load Redution (IBC 2009/2012) = Floor Live Load Reduction = 2	Yes 3.2%			CROSS SECTION ANALYSIS IS	RUN
Reduced Floor Live Load =	30.7 c	osf		VALID	
	<u>1.4D</u> 08.51	<u>1 20+1 61</u> 93.01	1.0		
	44.10	37.80	kip-ft kip-ft		
	0.00	20.15	kip ft		
	0.00	61.90 212.87	kip-ft kip-ft		
	1.4D	1.2D+1.6L			
	18.09 7.35	15.50	kips kips		
	0.00	3.36	kips		
	0.00	10.32	Rips		
Total Factored Shear = 2 Deflections (negative values indicate downward deflection)	25.44	35.48	kips		
	1.25 i	n			
		n			
	-0.86 ii -0.34 ii			Section Properties **	
Partition Live Load Deflection =	-0.13 i		1 . Janet	Section Properties	
		n	(=L/695) (=L/165)	Noncomposite	Full Composite
				Gross Section Properties	
				NA _{bettel} in 3.21 I ₄ in ⁶ 131	4.10
				lg in [™] 131 S _{bet D8} in ⁸ 40.8	97.6
				Step 08 in ⁸ 27.4	102.6
				Q _{toptar} in ⁸ 18.2 Elastic (Gracked) Section Properties	
				NA _{bet 08} in	5.41
				L _{er} in ⁴ S _{bet DB} in ⁸	267
				S _{tep DB} in ⁸ S _{tep DB} in ⁸	103.2
				Effective Moment of Inertia (for deflection calculations)	
** Elastic and plastic section moduli (S and Z, respectively			e cross section	Effective Plastic Section Properties	334
being transformed into the parent beam (D-Beam bottor	n teej mar	vertal.		PNA _{kotok} in 0.85	6.91
				Z in ³ 36.67 Basic DL (B <s+g)< td=""><td>57.76</td></s+g)<>	57.76
				Load Resisted by Each	Add'l Comp. DL
				Load Resisted by Each Cross Section	Add'l Comp. DL Pertition LL Floor LL

D-Beam [®] Calculator Reference Tool Version 3.1				Design Checks - Noncomposit	e
(Load & Resistance Factor Desig	gn - AISC	C 14th Editi	ion)	Noncomposite Moment	OK
					2 kip-ft
LRFD (14th Ed)				φ _k M _e = 159 Horizontal Shear	2 kip-ft OK
				V ₆ = 18	4 kips
Project Name / Job #				φV _e = 34	2 kips
rigee name / source					
D-Beam* D-Beam* =	DB 8x57				
Parent Beam Yield Stress (F_{y}) =	30	ksi			
Top Bar Yield Stress (F _v) =	50	ksi			
Span Information D-Beam* Span =	24	ft			
Composite Section Effective Width =	6	ft		Design Checks - Full Composit	
Total Tributary Width for Load =	17.5	ft		Floor LL Deflection Allow. $\Delta_{\rm el} = L/360$	OK
Precast Slab Nominal Slab Thickness =	8 in.			66	4 in 10 in
Precast Slab Weight =	58	psf		Full Composite Moment	OK
Grout Unit Weight of Grout =	140	lb/π ³		-	4 kip•ft 2 kip•ft
one wegne of brook =	240	UNE.		φ _k M _a = 297. Flexural Ductility Check	- sprik
				Ewel/Targe Internetion =	
				Zzy =	OK
Unfactored Loads					7 kips
Basic Dead Load (D-Beam [®] + Slab + Grout) =	62.5	psf		φ _i ν _e = 72	6 kips
Add1 Composite Dead Load (e.g. topping) = Partition Live Load =	25	psf psf			
Basic Floor Live Load =	40	psf			
Consider Floor Live Load Redution (IBC 2009/2012) =	Yes			CROSS SECTION ANALYSIS IS	
Floor Live Load Reduction = Reduced Floor Live Load =	23.2% 30.7	a s f		VALID	RUN
Factored Moments	<u>1.40</u>	120+1.6L			<u>y</u>
Basic Dead Load Moment =	110.25	94.50	kip-ft		
Add'I Composite Dead Load Moment = Partition Live Load Moment =	44.10 0.00	37.80 20.16	kip-ft kip-ft		
Floor Live Load Moment =	0.00	61.90	kip-ft		
Total Factored Moment =	154.35	214.35	kip ft		
Factored Shears Basic Dead Load Shear =	<u>1.4D</u> 18.37	<u>1.20+1.6L</u> 15.75	kips		
Add'I Composite Dead Load Shear =	7.35	6.30	kips		
Partition Live Load Shear =	0.00	3.36	kips		
Floor Live Load Shear = Total Factored Shear =	0.00	10.32 35.73	kips kips		
Deflections (negative values indicate downward deflection)		_			
(optional) D-Beam* Camber =	1.25	in			
Basic Dead Load Deflection = Net Basic Dead Load Deflection including Camber =	-1.67	in in			
Add'I Composite Dead Load Deflection =	-0.28	in		Section Properties **	
Partition Live Load Deflection =	-0.11	in in	/=: /05=1		Full
Floor Live Load Deflection = Total (Net) Deflection due to all loads =	-0.34 -1.15	in in	(=L/837) (=L/250)	Noncomposite	Composite
				Gross Section Properties	
				NA _{bottok} in 2.93	4.00
				l _a in ⁴ 169 Sector in ⁸ 57.7	114.2
				S _{tep 08} in ⁸ 33.3	114.0
				Q _{tap bar} in ⁸ 22.9	
				Elastic (Cracked) Section Properties	5.01
				lar in ⁴	348
				S _{bet DB} in ⁸	69.5
				Step 08 in* Effective Moment of Inertia (for deflection calculation	116.4 sc)
** Elastic and plastic section moduli (S and Z, respec	tively) are	based on enti	re cross section	Lifective memory of memory for beneficial concentration	402
being transformed into the parent beam (D-Beam b				Effective Plastic Section Properties	
				PNA ₆₀₁₀₆ in 0.68 Z in ⁸ 42.44	6.40 79.26
				2 In 42.44 Basic DL (8+S+G)	13.20
				Load Resisted by Each	Add'l Comp. DL
				Cross Section	Partition LL
					Floor LL.

D-Beam® Calculator Reference				De	esign Checks - Non	composite
(Load & Resistance Factor Desig	n - AISC	14th Editio	on)	Noncomposite Momen		OK
					M ₆ = 6 ₆ M ₆ =	110.5 kip-ft 190.3 kip-ft
LRFD (14th Ed)				Horizontal Shear	× -	18.4 kips
					∨e = ¢∨e =	18.4 kips 33.5 kips
Project Name / Job #						
				L		
D-Beam*	DB 8x61					
Parent Beam Yield Stress (F_y) =	50	ksi				
Top Bar Yield Stress (Fy) = Span Information	50	ksi				
D-Beam [®] Span =	24	ft		De	sign Checks - Full	Composite
Composite Section Effective Width = Total Tributary Width for Load =	6 17.5	ft ft		Floor LL Deflection	Allow. $\Delta_{LL} = L/350$	OK
Precast Slab	21.2				Δ _{ii} =	-0.34 in
Nominal Slab Thickness = Precast Slab Weight =	8 in. 58	psf		Full Composite Mome	L/360 =	-0.80 in
Grout				an composite mame	M _e =	214.6 kip-ft
Unit Weight of Grout =	140	ib/ft ³		Flexural Ductility Chec	φ ₆ M ₆ =	298.4 kip-ft
					Ewel/Targe Interaction =	
				Shear	2z _y =	OK
Unfactored Loads					v. =	35.8 kips
Basic Dead Load (D-Beam [®] + Slab + Grout) = Add'l Composite Dead Load (e.g. topping) =	62.7 25	psf psf			φ,V _n =	75.9 kips
Partition Live Load =	10	pst				
Basic Floor Live Load =	40	psf				
Consider Floor Live Load Redution (IBC 2009/2012) = Floor Live Load Reduction =	Yes 23.2%			CROSS SECTION		RUN
Reduced Floor Live Load =	30.7	psf		VAL	D '	
Factored Moments Basic Dead Load Moment =	<u>1.4D</u> 110.54	<u>1 20+1 61</u> 94,75	kip-ft			
Add'I Composite Dead Load Moment =	44.10	37.80	kip-ft.			
Partition Live Load Moment = Floor Live Load Moment =	0.00	20.16 61.90	kip-ft kip-ft			
Total Factored Moment =	154.64	214.61	kip-ft			
Factored Shears Basic Dead Load Shear =	<u>1.4D</u> 18.42	<u>1.20+1.6L</u> 15.79	kips			
Add1 Composite Dead Load Shear =	7.35	6.30	kips			
Partition Live Load Shear =	0.00	3.36	kips			
Floor Live Load Shear = Total Factored Shear =	0.00 25.77	10.32 35.77	kips kips			
Deflections (negative values indicate downward deflection)		_				
(optional) D-Beam* Camber = Basic Dead Load Deflection =	1.25	in				
Net Basic Dead Load Deflection including Camber =	-0.25	in				
Add'I Composite Dead Load Deflection = Partition Live Load Deflection =	-0.28 -0.11	in in			Section Propert	ies **
Floor Live Load Deflection =	-0.34	in	(=L/851)		Noncomposite	Full
Total (Net) Deflection due to all loads =	-0.98	in	(=L/294)	Gross Section Prope		Composite
				NA _{betos} in	3.22	4.07
				a in ^a	188	465
				Stop Dia in ⁸ Stop Dia in ⁸	58.2 39.2	114.3
				Q _{top bar} in ⁸	26.0	
				Elastic (Cracked) Sec NA _{bat 08} in	ction Properties	5.08
				l _{er} in ⁴		352
				S _{bet 08} in ⁸		69.2 120.4
				Step 08 in ⁸ Effective Moment of	f Inertia (for deflection	
** Elastic and plastic section moduli (S and Z, respect			e cross section	L _{err} in ⁴	188	409
being transformed into the parent beam (D-Beam bo	ttom tee)	material.		Effective Plastic Sect PNAtation in	tion Properties 0.73	6.84
				Z in ⁸	50.75	79.56
				Load Resisted by Each	Basic DL (B+S+G)	Add'l Comp. DL
				Cross Section		Partition LL
				L	ļ ļ	Floor LL
1						

DESIGN PRINCIPLES AND CALCULATIONS - SLAB DESIGN

Table 1 - Slab Capacity Chart (Total Load in psf)

SLAB	d	MESH SIZE	4'-1 1/4" JOI	ST SPACING
THICKNESS (t)		F _y = 60,000 psi	Exterior	Interior
t≥ 2 1/2"		6 x 6 W2.0 x W2.0	114	123
	1.6"	6 x 6 W2.0 x W2.9	157	172
No chair		6 x 6 W4.0 x W4.0	210	230
t≥ 3" with	2.1"	6 x 6 W2.9 x W2.9	206	226
1/2" Rod		6 x 6 W4.0 x W4.0	279	306
(shop welded to top chord)				
t≥ 3 1/2"	2.6"	6 x 6 W2.9 x W2.9	256	280
with 2 1/2"		6 x 6 W4.0 x W4.0	347	380
Chair				

Design Principles and Calculations - Slab Design

TABLE 3 - Concentrate	I Loads with 4'-1	1/4" Joist Spacing
-----------------------	-------------------	--------------------

CONCENTRATED LOAD	slab Thickness	MESH SIZE	SPECIAL REMARKS	
	2 1/2"	6 x 6 - W2.9	Extra layer @ (1)	
	2 1/2	6 x 6 - W2.9	Single layer throughout but S ₁ = 3'-10" max.	No
2000 lbs. on 2'-6" aquare area.		6 x 6 - W2.9	Extra layer @ (1) and (2)	"chairs" on
(office building)	3"	6 x 6 - W2.9	Single layer throughout but S ₁ = 4'-0" max.	רך
		6 x 6 - W2.9	Single layer throughout	
2500 lbs. on 2'-6" * square area.	3"	6 x 6 - W2.9	Extra layer @ (1) and (2)	No "chairs" on
plus 2" asphalt wearing surface	3	6 x 6 - W2.9	Single layer throughout but S ₁ = 2'-10" max.	7
4000 lbs. on 3'-6"	2 1/2"	6 x 6 - W4.0	S ₁ = 4'-0"	No
aquare area. (office building	3"	6 x 6 - W2.9	Extra layer @ (1) and (2)	"chairs" on
for some codes)	0	6 x 6 - W2.9	Single layer throughout but S ₁ = 2'-10" max.	רן

* Some building codes use different bearing areas.

TABLE 4 - Concentrated Loads with 5'-1 1/4"	Joist Spacing	ng
---	---------------	----

CONCENTRATED LOAD	slab Thickness	MESH SIZE	SPECIAL REMARKS	
2000 lbs. on 2'-6" square area. (office building)	3"	6 x 6 - W2.9	Extra layer @ (1) and (2)	No "chairs" on
4000 lbs. on 3'-6" square area. (office for some codes)	3"	6 x 6 - W4.0	Extra layer @ (1) and (2)	No "chairs" on

CONCRETE MIX

Top size of the coarse aggregate should not exceed 3/4" or as dictated by applicable codes. A slump of 4" is recommended.

HAMBRO'

Design Principles and Calculations - Web Design

VERTICAL SHEAR (WEB DESIGN)

The vertical shear forces are assumed to be carried entirely by the web member, forces being calculated using the conventional pin jointed truss analysis method. These assumptions result in calculated bar forces which have been shown by tests to be as much as 15% higher than the actual values because the slab, acting compositely with $^2_{1}$ section, is stiff enough to transmit some load directly to the support. This is particularly true of web members at the joist ends - those which are subjected to the highest vertical shear.

EFFECTIVE LENGTH OF COMPRESSION DIAGONAL

With the web member forces calculated as below, the bar sections are sized to prevent failure in either axial tension or axial compression using conventional working stress design procedures. As per AISC specifications fig. 7 is used as a reference in determining the effective length, k_p of the compression diagonals.

It is important to note that the web members are sized for the specified load capacity including concentrated loads where applicable. Furthermore, the webs are designed according to the latest requirements of the Steel Joist Institute.

NOTE: W₃ for longer epan.

WEB GEOMETRY (in.)										
NOM. DEPTH "d"	P1 _t	P1 _b	P2 _b	Р						
8, 10	6 @ 12	6 @ 16	12	20						
12	10 @ 16	10@21	16	24						
14, 16	15@24	15 @ 32	20	24						
18, 20, 22, 24	19@24	19 @ 32	24	24						

		Fig.	7	
D500™	and	MD20	00®	Geometry

9

Notebook Submission B

TABLE 6: D500TM Clear Span Table

		Residentia		Comn	nercial
Slab Thickness	3"	3" 3 1/2" 4"		3"	4"
Joist	LL = 40 psf	LL = 40 psf	LL = 40 psf	LL = 50 psf	LL = 50 psf
Depth*	DL = 65 psf	DL = 71 psf	DL = 77 psf	DL = 65 psf	DL = 77 psf
8"	20' - 0"	20' - 0"	20' - 0"	20' - 0"	20' - 0"
10"	25' - 0"	24' - 6"	23' - 6"	25' - 0"	23' - 6"
12"	30' - 0"	27' - 0"	26' - 0"	30' - 0"	26' - 0"
14"	31' - 0"	29' - 6"	28' - 0"	31' - 0"	28' - 0"
16"	33' - 6"	32' - 0"	30' - 6"	33' - 6"	30' - 6"
18"	36' - 0"	34' - 0"	32' - 6"	36' - 0"	32' - 6"
20"	38' - 6"	36' - 0"	34' - 6"	38' - 6"	34' - 6"
22"	40' - 6"	38' - 6"	36' - 6"	40' - 6"	36' - 6"
24"	43' - 0"	40' - 6"	38' - 0"	43' - 0"	38' - 0"
* Total floor of	depth = D500™	Joist depth pl	us slab thickne	88	

Advisor | Heather Sustersic

NOTES:

- Minimum slab thickness = 2 1/2"
- Minimum top chord cover = 1"

• f'_c = 3,000 psi, F_y = 50 ksi

JESSE C BORDEAU

· Table reflects uniform loads only.

Maximum Duct Openings

- Standard spacing is 4'-1 1/4"
 Live load deflection design standard:
- L/360
- Design clear spans, other than those shown in the above table, require additional structural review.
- Design > 43' 0" require additional structural design review.

D = MAXIMUM DIAMETER

S = MAXIMUM SQUARE

R = MAXIMUM RECTANGULAR

DEPTH (in.)	PANEL (in.)	D (in.)	8 (in.)	R (in. x in.)
8	20	4	4	6 X 3
10	20	6	5	7 x 4
12	24	8	6	9 x 5
14	24	9	7	91/2x6 11x5
16	24	10	8	10 1/2 x 6 1/2 13 x 5
18	24	11	8 1/2	11 x 7 12 1/2 x 6
20	24	11 1/2	9	12 x 7 13 x 6
22	24	12	9 1/2	12 x 8 14 x 6
24	24	12 1/2	10	13 x 8 14 x 7

NOTE: For other configurations, the maximum limits will be defined by the joist geometry.

HAMBRO'

1

System	Element	Unit	Unit Cost	Cost/SF
Girder Slab	Precast Hollow-Core Plank (8" thick)			\$10.40
	DB8x61 (W8x31)	LF	\$49.08	\$5.61
				\$16.01
	W12x16	LF	\$28.51	\$6.52
Non-Composite	W12x26	LF	\$43.01	\$3.58
	2.5" NW Topping	CF	\$3.96	\$1.07
				\$11.17
	W10x22	LF	\$39.35	\$6.75
Composito	W14x30	LF	\$48.40	\$4.03
Composite	2" NW Topping	CF	\$3.96	\$0.99
	Weld Studs	per stud	\$1.52	\$0.27
				\$12.04
	Steel Joists	LF	\$11.44	\$3.27
	3" Concrete Slab	CF	\$3.96	\$2.61
Hambro D-500	Formwork	SF	\$1.87	\$1.87
	Weld Studs	per stud	\$1.52	\$0.43
	Wire Mesh	SF	\$0.20	\$0.20
				\$8.38

Appendix B

Element	Member	#of members	Weight/ft	Length [ft]	Weight[lb]	Total Weight [k]	Distance Fro X[ft]		w•x	W*Y
BF-1	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	13.1	54.5	76.4	318.1
	HSS 6x6x1/2	2	35.2	13.6	957.4					
BF-2	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	22.9	54.5	133.7	318.1
	HSS 6x6x1/2	2	35.2	13.6	957.4					
BF-3	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	70.2	54.5	409.8	318.1
	HSS 6x6x1/2	2	35.2	13.6	957.4					
BF-4	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	80.1	54.5	467.6	318.1
	HSS 6x6x1/2	2	35.2	13.6	957.4					
BF-5	W14x176	2	176.0	10.5	3696.0					
	W14x26	1	26.0	19.2	499.2	5.2	63.7	12.5	330.9	64.9
	HSS6x6x1/2	2	35.2	14.2	999.7					
BF-6	W14x176	2	176.0	10.5	3696.0					
	W21x50	1	50.0	19.2	960.0	5.3	63.7	22.7	335.1	119.2
	HSS6x6x3/8	2	27.5	11.0	605.0					
BF-7	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	9.8	254.8	5.2	18.8	63.1	97.6	327.9
	HSS6x6x1/2	1	35.2	14.4	506.9					
BF-8	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	9.8	254.8	5.2	75.1	63.1	390.0	327.9
	HSS6x6x1/2	1	35.2	14.4	506.9					
Floor Slab	8" girder slab					695.5	53.6	39.1	37243.8	27207.8
						739.7			39485.0	29320.3
		X (COM) [ft]	53.4							
		Y (COM) [ft]	39.6							

Element	Element Direction	Dist. From Ref. Datum X[ft] Y[ft]		R_x [k/in]	R_y [k/in]	R_x*Y	R_y*X
BF-1	Y	13.1	54.5	0	2325.2	0.0	30421.5
BF-2	Y	22.9	54.5	0	2325.2	0.0	53237.5
BF-3	Y	70.2	54.5	0	2325.2	0.0	163326.2
BF-4	Y	80.1	54.5	0	2325.2	0.0	186142.3
BF-5	x	63.7	12.5	2252	0	28150.0	0.0
BF-6	x	63.7	22.7	1035.8	0	23512.7	0.0
BF-7	x	18.8	63.1	1687.6	0	106564.9	0.0
BF-8	x	75.1	63.1	1687.6	0	106564.9	0.0
Total				4975.4	9300.8	264792.4	433127.6
		X (COR)[ft]	46.6				
		Y (COR)[ft]	53.2				

Element	Rx	Ry	dx	dy	Rx*dy	Ry*dx	Rx*dy^2	Ry*dx^2	Vt			
BF-1	0.0	2325.2	33.5	1.3	0.0	77932.8	0.0	2612042.4	0.055			
BF-2	0.0	2325.2	23.7	1.3	0.0	55116.8	0.0	1306493.5	0.039	_		
BF-3	0.0	2325.2	23.6	1.3	0.0	54971.9	0.0	1299635.0	0.039	:	X (COR)[ft]	46.6
BF-4	0.0	2325.2	33.5	1.3	0.0	77787.9	0.0	2602341.0	0.054		Y (COR)[ft]	53.2
BF-5	2252.0	0.0	17.1	40.7	91656.4	0.0	3730415.5	0.0	2.613			
BF-6	1035.8	0.0	17.1	30.5	31591.9	0.0	963553.0	0.0	0.675		Dist. From F X[ft]	lef. Datum Y[ft]
BF-7	1687.6	0.0	27.8	9.9	16784.5	0.0	166935.6	0.0	0.117		13.1	54.5
BF-8	1687.6	0.0	28.5	9.9	16784.5	0.0	166935.6	0.0	0.117		22.9	54.5
						J=	12848351.6	[(k/in)ft^2]	3.7		70.2	54.5
											80.1	54.5
											63.7	12.5
		Story Shear	22.5								63.7	22.7
		e	0.4								18.8	63.1
		Mt [kft]	9.0								75.1	63.1