Structural Notebook Submission C

AC Hotel Philadelphia Philadelphia, Pennsylvania

Jesse C Bordeau
Heather Sustersic, Advisor
11/16/2015

Table of Contents (Notebook C starts on pg 53)

Executive Summary 2
Building Abstract 3
Site Location. 4
Documents used in preparation for this project 5
Gravity Load Determination (Dead, Live \& Snow) 6
Wind Load Determination 14
Seismic Load Determination 23
Typical Bay. 27
Alternative Systems 35
System Comparison 52
Lateral Analysis 53
Lateral Resisting Elements. 54
Modeling Approach/Assumptions/Constraints. 55
Center of Mass (COM) \& Center of Rigidity (COR). 56
Direct Shear \& Torsional Rigidity 59
Wind Load Comparison. 60
Seismic Load Comparison 62
Controlling Case. 63
Lateral System Checks 63
Member Spot Checks 65
Appendix A. 69
Appendix B. 77

Executive Summary

AC Hotel Philadelphia is a 15-story residential transient hotel (including penthouse) located in the heart of downtown Philadelphia. This new hotel, owned by Baywood Hotels, will be built on top of the previous NFL Films and Warner Bros distribution center, a historic twostory building located at the corner of Florist and North $13^{\text {th }}$ Street in Philadelphia.

The original two-story, $31^{\prime}-0^{\prime \prime}$ tall building is a load bearing masonry structure. In order to properly satisfy the proposed addition, a mat foundation of varying thickness will be installed and the building will be gutted and restructured. The new construction will consist of composite steel at the bottom two levels, supporting a 12-story steel-frame structure atop, capped with a penthouse. The typical floor to floor height measures $10^{\prime \prime} 6^{\prime \prime}$. Multiple $14^{\prime \prime}$ shear walls make up the lateral system until floor 3 where braced frames are utilized for architectural/spatial purposes including door and window openings.

AC Hotel Philadelphia was designed using the 2009 edition of the International Building Code and ASCE 7-05 was used to determine lateral loads on the building. The City of Philadelphia Building Code (with current amendments) and the 2014 version of "AC Hotels by Marriott Design Standards" were also used as references. The Philadelphia Historical Commission also influenced the project boundaries.

The purpose of this report is to identify the structural loads used in the design of AC Hotel Philadelphia. Gravity, wind and seismic loads are established in the following report. A code analysis was completed in order to have an accurate understanding of the design loads used for 230 North $13^{\text {th }}$ Street. Codes were used in accordance to the actual design codes applied when designing the building.

AC Hotel Philadelphia

Baywood Hotels | 230 North 13 ${ }^{\text {th }}$ Street, Philadelphia, Pa

Project Information

* Occupancy: Residential transient hotel
* Stories: parking garage +14 levels above grade + Mech. Penthouse \& Rooftop Terrace
* 192ft. Above sidewalk grade
* Overall project cost: $\$ 35,000,000$
* Size: 107,680 sq.ft.
* Construction Dates: Fall 2015 - Summer 2017

Project Team

Owner: Kurt Blorstad
General Contractor: Clemens Construction
Architect: Spg3
Structural Engineer: Holbert Apple Associates
MEP: McHugh Engineering

Features:

* I50 luxury units
* Underground, valet parking via car elevator
* Exclusive restaurant for guests
* Fitness center \& indoor pool
* Green Roofs
* Extensive (2 $2^{\text {rd }} \& 3^{\text {rd }}$ Levels)
* Intensive (Rooftop Terrace)

Structure:

* Foundation
* Mat-slab
* Underpinning of adjacent structures during construction
* Framing
* Structural steel framing
* Composite deck (normal-weight concrete)
* Precast hollow-core plank girder slab system
* Lateral System
* Concrete shear walls (lower levels)
* Concentric braced frames (upper levels)

MEP:

* Mechanical
* (4) three-ton air handling units
* Water-source heat pump
* Energy recovery wheel on the roof used to mix outside air with return air
*. Plethora of fans used to exhaust class $3 \& 44$ air
* Electrical
* 600KW Emergency generator on roof
* 2500A Main Circuit Breaker

JESSE BORDEAU ~ Structural Option http://jbordeau18.wix.com/thesis

Site Location

230 North $13^{\text {th }}$ St. is located in Philadelphia, Pennsylvania in proximity to the Liberty Bell, The Franklin Institute and the Eastern State Penitentiary. The site lies northeast of center city, offering dwellers a beautiful view of the Philadelphia skyline. Figures 1 and 2 clarify the exact location below.

Documents used in preparation for this report

Listed below are the codes and other supporting documents which were used to determine loads, factors and other variables for this report.

- American Society of Civil Engineers
- ASCE 7-05
- International Code Council
- International Building Code 2009
- Construction drawings
- Courtesy Holbert Apple Associates
- Course notes from previous semesters
- AE530 - Computer Modeling of Buildings
- AE 430-Indeterminate Structures
- AE 403 - Advanced Steel Design
- Hambro Composite Floor System Design Guide
- Girder-Slab System LRFD Version Design Guide v3.1
- Courtesy Holbert Apple Associates
- AISC Steel Manual

Gravity Load Determination (Dead, Live \& Snow) Roof Loads

The roof load calculated below is for the extensive green roof used in several locations around the building. Loads are compared to code minimum (IBC ch 16, Table 1607.1) within each section. Original loads, determined by professionals are located at the end of the gravity load portion of this report.

Note: Compared to extensive green roofs. intensive green roofs require higher design criteria because of the possibility of human traffic over it. Modular Green Roof Systems vary in weight, therefore an average load was applied.

Notebook Submission B

Notebook Submission B

Floor Loads

The girder-slab system is utilized to benefit construction efficiency and to reduce floor-to-floor height.

Exterior Wall Loads

Listed below are the dead load values used by the engineers who originally determined the loads for AC Marriott Philadelphia.

Table 1: Superimposed dead loads

Superimposed Dead Loads (in addition to structure self-weight)	
Area	Loading [psf]
Typical Roof	30
Floors	10
Intensive Green Roof	200
Extensive Green Roof	60

Wind Load Determination

The following section is the wind calculations for 230 North $13^{\text {th }}$ Street using ASCE 7-05 chapter 6. Most of the calculations were determined using Microsoft Excel, therefore spreadsheets are provided. These spreadsheets can be found at the end of this section and in Appendix A which also include base shear, along with diagrams which visually display the forces \& pressures vs. building height.

NOTE Book sub A	Winotanos cont (N-S)	TESSE 3
$n(84)=\frac{4 . \ln , 3}{\bar{v}_{2}}=\frac{4.6(0.5)(112.7)}{81.2}=4.15$		
$n\left(R_{0}\right)=\frac{15.401}{V_{2}}=\frac{154(a .6)(78.2)}{812}=9.64$		
$\begin{aligned} \left(413212 n=\frac{1}{n}-\frac{1}{2 n^{2}}\left(1-e^{-2 n}\right)=\frac{1}{2 n 2}-\frac{1}{2(20.01)^{2}}\left(1-e^{-22002)}\right)\right. & =0.142-(0.010 n)((29+1) \\ & =0.132 \end{aligned}$		
$R_{B}=\frac{1}{4.5}-\frac{1}{2\left(4.15^{3}\right)}\left(1-e^{-2(x+1)}\right)=0.241-0.029(0.9298)=0212$		
$\rightarrow R_{L}=\frac{1}{0.2}+\frac{1}{2(9.20 x)}\left(1-e^{-26 t)}\right)=0.109+(0.0054)(0.99 a)=0.1036$		
$\sqrt{0.1668(0.5787)}=0.311$		

Notebook Submission B Advisor | Heather Sustersic

Table 2: Wind pressures for windward, leeward and uplift displayed for the North-South direction.

Wind Pressure Determination ($\mathrm{N}-\mathrm{S}$)									Net Pressures [psf]	
Location	Story	z [ft]	kz	$\mathrm{qz} \mathrm{[psf]}$	Cp	qzGCp [psf]	Gcpi	qhGCpi [psf]	qzGCp-qh(+Gcpi)	qzGCp-qh(-Gcpi)
Windward	1	0	0.57	10.05	0.8	7.02	0.18	3.78	3.25	10.8
	2	15.66	0.57	10.05	0.8	7.02	0.18	3.78	3.25	10.8
		33.75	0.72	12.74	0.8	8.91	0.18	3.78	5.13	12.7
	4	44.25	0.78	13.75	0.8	9.61	0.18	3.78	5.84	13.4
	5	54.75	0.83	14.63	0.8	10.23	0.18	3.78	6.45	14.0
	6	65.25	0.87	15.33	0.8	10.72	0.18	3.78	6.95	14.5
	7	75.75	0.91	16.09	0.8	11.25	0.18	3.78	7.48	15.0
	8	86.25	0.96	16.99	0.8	11.88	0.18	3.78	8.10	15.7
	9	96.75	0.98	17.27	0.8	12.08	0.18	3.78	8.30	15.9
	10	107.25	1.01	17.80	0.8	12.45	0.18	3.78	8.67	16.2
	11	117.75	1.03	18.21	0.8	12.73	0.18	3.78	8.96	16.5
	12	128.25	1.06	18.70	0.8	13.08	0.18	3.78	9.30	16.9
	13	138.75	1.09	19.21	0.8	13.43	0.18	3.78	9.66	17.2
	14	149.25	1.11	19.56	0.8	13.68	0.18	3.78	9.90	17.5
	Penthouse Deck	163.00	1.13	19.92	0.8	13.93	0.18	3.78	10.15	17.7
	Penthouse	163.25	1.13	19.92	0.8	13.93	0.18	3.78	10.15	17.7
	Roof	181.00	1.17	20.62	0.8	14.42	0.18	3.78	10.64	18.2
	Elevator Roof	191.02	1.19	20.97	0.8	14.67	0.18	3.78	10.89	18.4
Leeward	All	All	1.19	20.97	-0.5	-9.17	0.18	3.78	-12.94	-5.39
Side	All	All	1.19	20.92	-0.7	-12.80	0.18	3.77	-16.57	-9.03
Parapet (WW)	2nd Story	31.50	0.71	12.51			1.50	18.77		18.77
	Penthouse	167.75	1.15	20.27			1.50	30.40		30.40
	Roof	185.75	1.18	20.80			1.50	31.20		31.20
	Elevator Roof	192.00	1.19	20.97			1.50	31.46		31.46
Parapet (LW)	2nd Story	31.50	0.71	12.51			-1.00	-12.51		-12.51
	Penthouse	167.75	1.15	20.27			-1.00	-20.27		-20.27
	Roof	185.75	1.18	20.80			-1.00	-20.80		-20.80
	Elevator Roof	192.00	1.19	20.97			-1.00	-20.97		-20.97
Roof	(0-95.5ft)	191.02	1.19	20.97	-1.04	-19.06	0.18	3.78	-22.84	-15.29
	(>95.5ft)	191.02	1.19	20.97	-0.7	-10.13	0.18	3.78	-13.91	-6.36

Table 4: Wind story shears displayed for the (N-S) direction.
Table 3: Other factors used for wind determination (N-S direction).

$\mathrm{V}^{\wedge} 2$	8100
l	1
kd	0.85
kzt	1
G	0.874
L/B	0.69

Forces	B	pw pl	H	Total Force
F1	112.7	16.19	7.83	14.3
F2	112.7	16.19	16.875	30.8
F3	112.7	18.08	14.295	29.1
F4	112.7	18.78	10.5	22.2
F5	112.7	19.39	10.5	23.0
F6	112.7	19.89	10.5	23.5
F7	112.7	20.42	10.5	24.2
F8	112.7	21.05	10.5	24.9
F9	112.7	21.24	10.5	25.1
F10	112.7	21.61	10.5	25.6
F11	112.7	21.90	10.5	25.9
F12	112.7	22.24	10.5	26.3
F13	112.7	22.60	10.5	26.7
F14	112.7	22.85	12.125	31.2
FPD	112.7	23.09	7	18.2
FP	112.7	23.09	9	23.4
FR	112.7	23.58	13.885	36.9
FER	112.7	23.83	5.01	13.5
			[kip]	444.9

Notebook Submission B Advisor | Heather Sustersic Structural

Notebook Submission B

Table 5: Wind pressures for windward, leeward and uplift displayed for the North-South direction.

Wind Pressure Determination (E-W)									Net Pressures [psf]	
Location	Story	z [ft]	kz	$\mathrm{qz} \mathrm{[psf]}$	Cp	qzGCp [psf]	Gcpi	qhGCpi [psf]	qzGCp-qh(+Gcpi)	qzGCp-qh(-Gcpi)
Windward	1	0	0.57	10.05	0.8	7.15	0.18	1.81	5.34	9.0
	2	15.66	0.57	10.05	0.8	7.15	0.18	1.81	5.34	9.0
	3	33.75	0.72	12.74	0.8	9.07	0.18	2.29	6.78	11.4
	4	44.25	0.78	13.75	0.8	9.79	0.18	2.47	7.31	12.3
	5	54.75	0.83	14.63	0.8	10.42	0.18	2.63	7.78	13.0
	6	65.25	0.87	15.33	0.8	10.92	0.18	2.76	8.16	13.7
	7	75.75	0.91	16.09	0.8	11.46	0.18	2.90	8.56	14.4
	8	86.25	0.96	16.99	0.8	12.10	0.18	3.06	9.04	15.2
	9	96.75	0.98	17.27	0.8	12.30	0.18	3.11	9.19	15.4
	10	107.25	1.01	17.80	0.8	12.67	0.18	3.20	9.47	15.9
	11	117.75	1.03	18.21	0.8	12.96	0.18	3.28	9.69	16.2
	12	128.25	1.06	18.70	0.8	13.31	0.18	3.37	9.95	16.7
	13	138.75	1.09	19.21	0.8	13.68	0.18	3.46	10.22	17.1
	14	149.25	1.11	19.56	0.8	13.93	0.18	3.52	10.41	17.5
	Penthouse Deck	163.00	1.13	19.92	0.8	14.18	0.18	3.59	10.60	17.8
	Penthouse	163.25	1.13	19.92	0.8	14.18	0.18	3.59	10.60	17.8
	Roof	181.00	1.17	20.62	0.8	14.68	0.18	3.71	10.97	18.4
	Elevator Roof	191.02	1.19	20.97	0.8	14.93	0.18	3.78	11.16	18.7
Leeward	All	All	1.19	20.92	-0.5	-9.31	0.18	3.77	-13.08	-5.54
Side	All	All	1.19	20.92	-0.7	-13.03	0.18	3.77	-16.80	-9.27
Parapet (WW)	2nd Story	31.50	0.71	12.51			1.50	18.77		18.77
	Penthouse	167.75	1.15	20.27			1.50	30.40		30.40
	Roof	185.75	1.18	20.80			1.50	31.20		31.20
	Elevator Roof	192.00	1.19	20.97			1.50	31.46		31.46
Parapet (LW)	2nd Story	31.50	0.71	12.51			-1.00	-12.51		-12.51
	Penthouse	167.75	1.15	20.27			-1.00	-20.27		-20.27
	Roof	185.75	1.18	20.80			-1.00	-20.80		-20.80
	Elevator Roof	192.00	1.19	20.97			-1.00	-20.97		-20.97
Roof	(0-95.5ft)	191.02	1.19	20.97	-1.04	-31.41	0.18	3.78	-35.19	-27.64
	(>95.5ft)	191.02	1.19	20.97	-0.7	-21.14	0.18	3.78	-24.92	-17.37

Table 7: Wind story shears displayed for the ($E-W$) direction.

Table 6: Other factors used for wind determination ($E-W$ direction).

$V^{\wedge} 2$	8100
l	1
kd	0.85
kzt	1
G	0.89
L/B	1.44

Forces	$\mathrm{B}[\mathrm{ft}]$	pw pl	H [ft]	Total Force
S1	78.2	18.42	7.83	11.3
F2	78.2	18.42	16.875	24.3
F3	78.2	19.86	14.295	22.2
F4	78.2	20.39	10.5	16.7
F5	78.2	20.86	10.5	17.1
F6	78.2	21.23	10.5	17.4
F7	78.2	21.64	10.5	17.8
F8	78.2	22.12	10.5	18.2
F9	78.2	22.27	10.5	18.3
F10	78.2	22.55	10.5	18.5
F11	78.2	22.76	10.5	18.7
F12	78.2	23.02	10.5	18.9
F13	78.2	23.30	10.5	19.1
F14	78.2	23.48	12.125	22.3
FPD	78.2	23.67	7	13.0
FPD	78.2	23.67	9	16.7
FR	78.2	24.05	13.885	26.1
FER	78.2	24.23	5.01	9.5
			[kip]	326.0

Seismic Load Determination

Seismic loads are calculated in the following section using ASCE 7-05, chapters $11 \& 12$.
$9 / 28 / 2015$
Design Maps Summary Report
末USGS Design Maps Summary Report
User-Specified Input
Building Code Reference Document ASCE 7-05 Standard (which utilizes USGS hazard data available in 2002)
Site Coordinates $39.95689^{\circ} \mathrm{N}, 75.16017^{\circ} \mathrm{W}$
Site Soil Classification Site Class C - "Very Dense Soil and Soft Rock"
Occupancy Category I/II/III

USGS-Provided Output

$$
\begin{array}{lll}
\mathbf{S}_{\mathrm{s}}=0.269 \mathrm{~g} & \mathbf{S}_{\mathrm{Ms}}=0.323 \mathrm{~g} & \mathbf{S}_{\mathrm{DS}}=0.216 \mathrm{~g} \\
\mathbf{S}_{1}=0.060 \mathrm{~g} & \mathbf{S}_{\mathbf{M 1}}=0.101 \mathrm{~g} & \mathbf{S}_{\mathrm{D} 1}=0.068 \mathrm{~g}
\end{array}
$$

Figure 3: Seismic design criteria based on exact site location (Courtesy http://ehp2earthquake.wr.usgs.gov)

Notebook Submission B

,	NTEBOOK SUB A	SEISMIC LOAOS	JESSE B	15
	SEISMCL LOMOS			
	[Staion 14.12] STRUCTLRE NOT EXEMPT			
	[fron oravimea] STE Clats C			
	[TRELE 126-1] STTE CLASS C, OCC.CAT II \rightarrow ELF IS FERMITEO			
	[EQN128-7] $T_{a}=\left(T_{h}{ }^{\text {² }}\right.$ where: C			
	$T_{a}=(0.05)\left(191^{0.4}\right)=1.54 \mathrm{c}$			
	[EAN 12,5-1] $\quad V=C_{8} W=(0.043)(1$ LAF $)=339.1 / \mathrm{k}$			
	SEE SPREADSHEET FOR COMRLETE RESUITS			
\bigcirc				

Table 6: Floor-by-floor breakdown of total building mass for AC Hotel Philadelphia.

Story	Floor Area [sq.ft.)	Floor Load [psf]	Snow Load (20\%) [psf]	Trib. Wall Height	Building Perimeter	Wall Load [psf]	Weight	Parapet	Mech/Misc	Total Floor Weight
1	8050	95		7.83	381.8	27.5	846961.1			846961
2	9770	95		16.88	381.8	27.5	1105382	1020	44928	1151330
3	5925	95		14.3	381.8	27.5	713017.9	1909		714927
4	5925	5		10.5	381.8	27.5	673119.8			673120
5	5925	95		10.5	381.8	27.5	673119.8			673120
6	5925	95		10.5	381.8	27.5	673119.8			673120
7	5925	95		10.5	381.8	27.5	673119.8			673120
8	5925	95		10.5	381.8	27.5	673119.8			673120
9	5925	95		10.5	381.8	27.5	673119.8			673120
10	5925	95		10.5	381.8	27.5	673119.8			673120
11	5925	95		10.5	381.8	27.5	673119.8			673120
12	5925	95		10.5	381.8	27.5	673119.8			673120
13	5925	95		10.5	381.8	27.5	673119.8			673120
14	5925	95		12.125	381.8	27.5	690181.4			690181
Penthouse Deck	5925	95		7	381.8	15	602964			602964
Penthouse	5925	95		9	381.8	15	614418			614418
Roof	1250	138	3.6	13.87	328	15	245240.4	11480	2000	258720
Elevator Roof	400	68	3.6	5.01	68	15	33750.2	680	50000	84430
*included 3psf for weight of steel and extra allowances for pool, mech equip \& fitness							Total Bu	ilding We	ght [kips]	11695

Table 7: Seismic story shears displayed for both orthogonal directions.

Story	hx [ft]	wx [kip]	wxhx^k	Cvx	Fx	Vx
Elevator Roof	191.0	84.4	3079641.2	0.03	8.5	8.5
Roof	181.0	258.7	8475270.7	0.07	23.4	31.9
Penthouse	163.3	614.4	16374105.6	0.13	45.2	77.1
Penthouse Deck	163.0	603.0	16021107.0	0.13	44.2	121.3
14	149.3	690.0	15370138.1	0.13	42.4	163.7
13	138.8	673.1	12958226.7	0.11	35.8	199.4
12	128.3	673.1	11071190.9	0.09	30.5	230.0
11	117.8	673.1	9332573.6	0.08	25.8	255.7
10	107.3	673.1	7742374.8	0.06	21.4	277.1
9	96.8	673.1	6300594.6	0.05	17.4	294.5
8	86.3	673.1	5007233.0	0.04	13.8	308.3
7	75.8	673.1	3862289.9	0.03	10.7	319.0
6	65.3	673.1	2865765.3	0.02	7.9	326.9
5	54.8	673.1	2017659.3	0.02	5.6	332.4
4	44.3	673.1	1317971.9	0.01	3.6	336.1
3	33.8	714.9	814315.8	0.01	2.2	338.3
2	15.7	1151.3	282339.7	0.00	0.8	339.1
1	0.0	847.0	0.0	0.00	0.0	339.1
	Σ	11694.7122892798 .1		1.0		
* $\mathrm{k}=2 \mathrm{~b} / \mathrm{c}$ period is $>0.5 \mathrm{~s}$						
$\mathrm{V}=$	339.1					

Typical Bay

Bays sizes vary within AC Hotel Philadelphia, therefore, an average size bay was selected for consideration. Due to the fact that the chosen bay is guest rooms, loads are based off private occupancy.

Figure 4: Typical floor for AC Hotel Philadelphia shown above (approx. 94'x63').

Typical Bay
(4-8, B-C)

Columns under consideration (B8 \& C8)

Member Spot Check

INPUT:
D-BEAM SPAN $=24^{\prime}$
TRIB WIORIT $=17.5^{\prime}$
SLAB THKKMESS $=8^{\prime \prime}$ [S.104]
PRECATSLLAB WT $=58 \mathrm{PSF}$ [PG 9 OF DG] $]$
GROUT WT $=140$ PCF
$A D O^{\prime} L$ COMPOSITE OL (22^{*} CONCRETE TOPPING $)=2 / 12(150)=25$ PSF
PARTITION LL $=10 \mathrm{PSF}$
FLOOR LL $=$ YOPSF *
USE REOUCEO LL? \rightarrow YES
(AMBER (OPTIOWAL) $\rightarrow 125^{\prime \prime} \mathrm{B} / \mathrm{C}$ ON PLAN OB 8×61 HAS CAMBER=1.25"
RESULTS: ASSUME COMPOSITE SYSTEM
TRY: $O B 8 \times 45, D B 8 \times 57 \$ 088 \times 61$ (USEO ON PLANS)
$D B 8 \times 45 \rightarrow \phi_{M_{n}}=216.6>M_{v}=212.9 \mathrm{kFT} \checkmark$
$\Phi V_{n}=58.2 \mathrm{k}>V_{V}=35.5 \mathrm{k} \mathrm{J}$
$\Delta_{\text {LL }}=0.41^{\prime \prime}<1 / 360=0.8^{\prime \prime} \mathrm{J}$
$D B 8 \times 57 \rightarrow \varnothing M_{N}=297,2 \mathrm{kFT}>M_{U}=214,4 \mathrm{k} \cdot \mathrm{FT} \mathrm{J}$
$\phi V_{N}=72.6 \mathrm{k}>V_{U}=35.7 \mathrm{k} \quad \mathrm{V}$
$\Delta_{L L}=0.34^{\prime \prime}<4 / 360=0.8^{\prime \prime} \mathrm{V}$
$D B 8 \times 61 \rightarrow \varnothing M_{n}=298.4 \mathrm{kFT}>M_{v}=2 M_{1} .6 \mathrm{k} \cdot \mathrm{FT} V$
$\phi V_{N}=75.9 \mathrm{k}>V_{V}=35.8 \mathrm{~kJ}$
$\Delta_{L}=0.34^{\prime \prime}<L / 360=0.8^{\prime \prime} \mathrm{V}$
SMHLIER MEMBERS ARE SUFFICIENT, HOWEVER DB8×6I WAS PROBABLY CHOSEN
FOR ITS EXTRA CAPACITY

[S.503] SHEARSTUOS $\rightarrow 3 / 4^{\prime \prime} \phi, S^{\prime \prime}$
$[S, 001] F^{\prime} C=4500 \mathrm{P}, 1$ FOR FRAMEDS.O.G.
[S.104] NOTE Y: COMPOSITE STEEL \rightarrow UNSHORED
$\left[\right.$ [TABLE 3-21] NO DECK, $3 / 4^{\prime \prime} \phi$ STW, NWC, $F^{\prime} C=4 \mathrm{ks}.[4.5 \mathrm{kSI}$ NCT IN MANUAL $] \rightarrow Q_{N}=21.5 \mathrm{k}$
[TABLE 1-1] FOR WI6 $\times 36: d=15.9^{\prime \prime}, A_{s}=10.6 \mathrm{in}^{2}, b_{f}=7.0^{\prime \prime}$

DETERMINE MAX MOMENT:
$D L=112 P S F \quad$ FLOWR-FLCOR
$O L$ WHL $=27.5 P S F \times 10.5 \mathrm{FT}=289 \varphi L \mathrm{~F}$
$L L=100$ PSF $\rightarrow A_{\text {TVP RNK }}=24 \times 17.5=420 \mathrm{FT}^{2} \therefore$ PEOUCTION ALLOWED
$L_{i}=\left\lvert\, \begin{aligned} & 100(0.5)=5096 F \\ & 100\left(0.25+\frac{15}{\sqrt{420}}\right)=98 \text { PSF } \rightarrow \text { USE. } 100 \text { PSF Q/C NEGLIGIQLE DIFFERENLE }\end{aligned}\right.$
$w_{c}=1.2 D L+1.6 L L$
$=1.2(112)+1.6(100)$

- 294 PSF ($17.5 / 2$)
$=2576$ PLF $+1.2(289)$
$=2923 \mathrm{PLF}=292 \mathrm{kLF}$

$$
M_{u}=\frac{w_{u} l^{2}}{8}=\frac{(2.92)\left(24^{2}\right)}{8}=210 \mathrm{k} \cdot \mathrm{FT}
$$

DETERMINE MOMENT CAPACITY:

```
\(\sum Q_{N}=12\) STUDS \(\rightarrow 6 /\) SIOE \(\rightarrow 6(21.5)=129 \mathrm{~K}\) CONTROLS
    \(\left.\begin{array}{l}T_{S}=A_{s} F_{y}=(10.6)(50)=530 \mathrm{~K} \\ C_{C}=0.85 F^{\prime} \text { cbefft }=0.85(4.5)(36)(8)=1102 \mathrm{k}\end{array}\right\} \Sigma_{N}<T_{S} \& C_{C}:\) PARTULLY confosite
```

 \(a=\frac{\sum Q_{N}}{0.55 f_{c} b_{\text {beff }}}=\frac{129}{0.85(4.5)(36)}=0.94^{\prime \prime}\)
 \(Y_{2}=t-\frac{a}{2}=8 \cdot \frac{0.94}{2}=7.53:\) PNA IN CONCRETE
 \(A_{s} F_{Y}-\Sigma Q_{N}=2 F_{y} b_{f} x\)
 \(y_{1}=x=\frac{A_{6} F_{y} \cdot \sum Q_{N}}{2 F_{y} b_{f}}=\frac{530.129}{2(50)(7)}=0.57^{\prime \prime}\)
 \(M_{N}=T_{S}(d / 2)+\Sigma Q_{N}\left(t-a_{2}\right) \cdot 2 F_{y} \cdot b_{f} \cdot x(1 / 2)\)
 \(=530(159 / 2)+129(7.53) \cdot 2(50)(7)(0.57)(0.57 / 2)\)
 \(=423 \cdot \mathrm{k} \cdot \mathrm{FT}\)
 \(\phi M_{N}=0.9(423)=381, k \cdot F T>210 \mathrm{~K} \cdot \mathrm{FT} \therefore\) W \(16 \times 36\) OK SO FAR \(\rightarrow \mathrm{CHECK}^{2} \Delta\)

IN SUMMARY, TYQ. DB 8×61 \& WI6x36 IS ADEQUATE FOR STRENGTH 4 SERVICABILITY

Column Load Spot Check

NOTEBOOK SLBMISSION B COLUMN LOAD SPOTCHECK INTERIOR COLUMN 22
INTERLOR COLUMN C8 F EXTERIOR COLUMN B8
COUUMN SILES:

	FLOOR	B8	C8
	15 (PENTHOKE)	W12×40	W14×43
	12-14	W12×40	W 14×61
	9-11	$\omega 12 \times 50$	W14x61
VERIFY LOAOS HERE	6-8	W12*58	W14×74
	3-5	W12072	$w 14 \times 90$
INIERIOR COLUAN			-

FOR COLUMN C8: TRIB AREA/FLOOR $=24^{\prime} \times 18.75^{\prime}=450 \mathrm{FT}^{2}$
[TABLE 4-2] ASCE 7-OS: $\mathrm{K}_{L}=4$ FOR INTERIOR a EXTERIUR COLUMNS
[S.OOI] TYP. FLOOR \rightarrow REDUCIBLE
ROOF \rightarrow NOT REQUCIBLE
$L_{=}=L_{0}\left(0.25+\frac{15}{\sqrt{\mathrm{KLAT}^{2}}}\right)=50\left(0.25+\frac{15}{\sqrt{(4)(450)}}\right)=30.2 \mathrm{PSF}$
15 THLCOR
$\left.\begin{array}{c}\text { (cosine } \\ \text { Toner }\end{array}\right)$
$D L=148 \mathrm{PSF}(450)=66600^{*}+2000^{*}=68600^{*}$
$\omega_{\text {enat }}=30$ PSF $(450)-13500^{\#}$
$S L=18 P 5 F(450)=8100^{*}$
$3^{\text {RO. }} 14^{\text {TH }}$ FLOOR
$D L=9895 F(450)=44100 *$
$L L=30.2 \mathrm{PSF}(450)=13590 \mathrm{H}$
$D L=68600+12(44100)+\left(16.78^{\prime}\right)(43$ PLF $)+\left(63^{\prime}\right)(619 L F)+(31.5)(749 L F)+(31.5)(90)$ $=606 \mathrm{k}$
$L L=1(13500)+12(13590)=177 \mathrm{k}$
$P_{U}=1.20 L+1.6 L L+1.05 L=1.2(606)+1.6(177)+1.0(8.1)=1019 \mathrm{~K}$
[TABLE 4-1] W $14 \times 90 \rightarrow \mathrm{KL}=10.5^{\prime} \rightarrow \phi P_{N}=1095 \mathrm{k}>1019 \mathrm{k} \therefore$ WI 4×90 SUFFICIENT

EXTERIOR COLUMN

```
FOR COLUMN B8: TRAB AREA/FLOOR \(=\left(\frac{17.5}{2}\right)(24)=210 \mathrm{FT}^{2} \angle 400 \mathrm{FT}^{2}:\) CANT REOUCE
    EXTERIOR WALL LOAO \(=289\) PLF \(\left(24^{\prime}\right)=6940^{*} /\) FLOOR
        LSTH FLCOR
```

 \(D L=98 \mathrm{PSF}(210)=20580+6940 \times 27520 \mathrm{H}\)
 \(U_{\text {perf }}=30 \mathrm{PSF}(210)=6300 \%\)
 \(S_{L}=1895 F(210)=3780 \mathrm{H}\)
 \(3^{\text {RO- }} 14^{\text {th }}\) FLOOR
 \(D L=98(210)+6940=27520^{H}\)
 \(L L=50(210)=10500 \mathrm{H}\)
 \(D_{L}=13(27520)+(16.75)(40 \mathrm{FLF})+(3 L 5)(40\) PLF \()+(31.5)(50 P L F)+(31.5)(58 \mathrm{PLF})+(31.5)(02 \pi F)\)
 \(=366 \mathrm{k}\)
 \(L L=1(6300)+12(10500)=133 k\)
 \(P_{v}=1.2(366)+1.6(133)+1.0(3.78)=656 k\)
 [TABLE 4-1] W \(12 \times 72 \rightarrow \mathrm{KL}=10 . S^{\prime} \rightarrow \phi P_{N}=834 \mathrm{k}>656 \mathrm{k}: \mathrm{W} 12 \times 72\) UFFICIENT
 AFTER ANALYSIS, BOTH THE INTERIOR EXTERIOR COLUMNS ARE SLFFICIENT
 FOR GRAVITY LOAOS

Alternative Systems

During my analysis, three framing systems were examined:

1. Non-Composite Steel Framing

2. Composite Steel Framing

3. Hambro D-500 Composite

Alternative System 1: Non-Composite Steel Framing

NOTEROOK SUPMISSION B ALTERNATIVE SYSTEMH1. NON-COMPOSITE STEELFRAMING 24

```
    SPAN=24
```

SPACING $=5.83^{\circ}$
ASSUME LL = YOPSF (BAY ANALYZED IS PRIVATE SPACE) +10 (fARTITIONS) $=50 \mathrm{PSF}$
From vulcraft catalog

$$
\text { TRY } 1.5 \text { C } 20,2: 5^{\prime \prime} \text { NWC TOPPING } \rightarrow 4^{\prime \prime} \text { TOTAL }
$$

-44psf

- MAX SPAN $=8^{\prime} 8^{\prime \prime}$ FOR 3 SPAN $>5.83^{\prime} \mathrm{V}$
[As AR s. ∞ ol]
$O L=D E C K+O L_{\text {SLifapmateo }}+S W$
$=44+10+5$
$=59$ PSF
INTERIOR: $W_{U}=1.2(59)+1.6(50)=151$ PSF $\left(5.83^{\circ}\right)=879$ PSF $=0.88 \mathrm{KLF}$

$$
M_{v}=\frac{0.88\left(24^{2}\right)}{8}=63.4 \mathrm{kFT}
$$

[TABLE 3-2] TRY $\underset{\substack{\text { (sconowical) }}}{\omega 12 \times 16 .} \rightarrow \phi M_{n}=75.4$ FTK $>63.4 \mathrm{FTK}$ $I_{x}=103 \mathrm{in}^{4}$
CHECK Δ 's:
LImit Live Loá To $1 / 360=0.8^{\prime \prime}$

$$
\begin{aligned}
& \Delta_{L L}=\frac{5 W_{L L} L^{4}(1728)}{384 E I_{x}}=\frac{S(020)\left(24^{2}\right) 1728}{384(29000)(103-1}=0.73^{\prime \prime}<0.8^{\prime \prime} \therefore \text { AOEQUATE FOR } \Delta \\
& W_{L L} \\
& =\frac{50(5.83)}{1000}-0.292 \mathrm{KLF}
\end{aligned}
$$

EXTERIOR: DLWAL $=289$ PLF
$W_{U}=1.2(59)+1.6(50)=151 \operatorname{PSF}\left(\frac{5.83}{2}\right)=441 \mathrm{PLF}+1.2(289 P L F)=0.79 \mathrm{kLF}$
$\underset{\text { (EKTERIOR) }}{\text { O. } 79} \mathrm{KLLF}<\underset{\text { (IWTERLOR) }}{0.88 \mathrm{KLF}} \quad \therefore$ WI2×16 IS SUFFICIENT $\sqrt{\text { I }}$
NUTEBCOK SUBMISSION B ALIERNATIVE SISTEM H1 NON-COM POSITE, ERAMING 26 CHECK MEMBER SELF-WEIGHT:
W12 $16 \rightarrow \frac{16 . P L F}{5.83 \mathrm{~T}^{T}}=2.8 .25$ PSF ALLOWANCE \therefore USE W/2×16 $25.83^{\circ} \mathrm{O} . \mathrm{C}$
SELECT GIROER: $\frac{1}{2}$ LONOFRON AOS BAYS \downarrow
SPAN $=17.5^{\prime} \quad$ POIŃT LOAO ON GIRDER $(\mathrm{P})=\frac{1}{2}(0.88 \mathrm{kLF})\left(24^{\prime}\right)(2)=21 \mathrm{k}$ SPACING $=24^{\prime}$

$$
\begin{aligned}
\text { ASSUME GIRDER SWV } & =5 \mathrm{WF}\left(17 . \mathrm{s}^{\prime}\right) \\
& =87.5 \mathrm{PLF} \\
& \approx 0.09 \mathrm{kLF}
\end{aligned}
$$

$$
\gamma^{a}=5.83^{\circ} r 5.83^{\circ} \text { y } 5.83^{\circ}
$$

[TABLE 3-23] CASE 9:2 equal COncentrated lohos sTMMETRICALYY PLaced]

$$
M_{\text {max }}=\left(P_{u} \cdot a\right)+\frac{w l^{2}}{8}
$$

$$
=(21)(5.83)+\frac{0.09\left(17.5^{2}\right)}{8}
$$

$=126 \mathrm{~K} \cdot \mathrm{FT}$
TRY $w 12 \times 26: I_{x}=204 \mathrm{in}^{4}, \emptyset M_{n}=140 \mathrm{~K} \cdot \mathrm{FT}>126 \mathrm{~K} \cdot \mathrm{FT} \quad \sqrt{ }$
CHECK \triangle :
$\Delta_{L}=\frac{P_{U L} L^{3}}{28 E I}=\frac{[(50)(5.83)(24)] / 1000\left(17.5^{3}\right)(1728)}{28(29000)(204)}=0.39 "$

$$
\frac{L}{360}=\frac{17.5(12)}{360}=0.583^{\circ}>0.39^{\prime \prime} \therefore \text { GIRDER IS ADEQUATE }
$$

MEMBER SW: $26 / 17.5=1.49<5 \therefore$ GIROER SW IS CONSERVATIVE
USE WI2×16 BEAMS ES.83'O.C. WI2×26GIROER

* same depths are used for connection purposes

NOW I WILL LOOK INTO SWITCHING THE ORIENTATION OF THE BEAMS \&GIROERS IN ORDER TO DETERMINE THE OPTION THAT MINIMIZES STEEL

$L L=40 \mathrm{PSF}+10=50$ PSF
FROM VULCRAFT CATALOG
USE SAME DECKING $1.5 \mathrm{C} 20,2,5 \mathrm{NWC}$ TOPPING

$$
\begin{aligned}
& w_{U}=151 \text { PSF }\left(8^{\prime}\right)=1208 \mathrm{PLF}=1.21 \mathrm{KLF} \rightarrow W_{L L}=\frac{(50)(8)}{1000} \cdot 0.40 \\
& M_{L}=\frac{(1.20)\left(17.5^{2}\right)}{8}=46 \mathrm{KFT}
\end{aligned}
$$

[TABLE 3-2] TRY $\underset{\text { (ELCowory) }}{\boldsymbol{w} 10 \times 12 \rightarrow} \rightarrow M_{n}=97.5 \mathrm{KFT}>46 \mathrm{~V}$

$$
\begin{array}{ll}
\text { (Ecow } 04 Y) \\
I_{x}=538: i^{4}
\end{array} \quad 4 / 360=\frac{12,5(12)}{360}=0.583 "
$$

CHECK Δ 's:

$$
\Delta_{L L}=\frac{S W L^{4}(172)}{384 E I_{x}}=\frac{5(0.40)\left(17.5^{4}\right)(1728)}{384(2900)(53.8)}=0.54^{\circ}<0.58^{\prime \prime} \therefore \text { ok } \sqrt{ }
$$

CHECK MEMBER SW:
W $10 \times 12 \rightarrow \frac{12}{8}=1.5<5$ SSF ALLOWANCE \therefore USE WIOXI2 Q $8^{\circ} O . C$

[TABLE 3-23]CASE 9:

$$
\begin{aligned}
M_{\max } & =(P \cdot \cdot a)+\frac{w L^{2}}{8} \\
& =2(8)+\frac{(0.12)\left(24^{2}\right)}{8} \\
& =176 \mathrm{k} \cdot \mathrm{FT}
\end{aligned}
$$

TRY WM $\times 30$: $I_{x}=291 \mathrm{in}^{4}, \phi M_{n}=177 \mathrm{k} \cdot \mathrm{FT}>176 \mathrm{~K} \cdot \mathrm{FT}$

$$
\Delta_{L n}=\frac{[(50)(8)(17.5)] / 1000\left(24^{3}\right)(1728)}{28(29000)(291)}=0.71 .1
$$

$$
\frac{L}{360}=\frac{(24)(12)}{360}+0.8^{\circ}>0.71^{\prime \prime}
$$

CHECK SW: $\frac{32}{24}=1.25<5$ PSF ALLLOWANCE \therefore OK USE WIUNILBEAMS Q 8'O.C. AW 14×30 GIROERS

CHECK EXTERIOR GIRDER FOR AOD'L WALL LOAD

$$
\begin{aligned}
& \$ \downarrow \int_{\downarrow}^{\mathrm{P}} \downarrow \int_{\downarrow}^{P=0.12 \mathrm{kLF}+\frac{1.7297)}{P 000}}=0.47 \mathrm{kLF} \\
& P_{u}=\frac{1}{2}(1.08)(17.5)=9.45 \mathrm{k}
\end{aligned}
$$

determine optimal beam configlration:
WEIGHT OF STEEL
Beams long direction:

$$
(4 \mathrm{BEAMS})\left(16^{4} / \mathrm{FT}\right)\left(24^{\prime}\right)+(2 G R O E R S)(26 * / F T)\left(17.5^{\prime}\right)=24466^{* *}
$$

BEAMS SHORT DIRECTIOW:
$(4$ BEAMS $)(12 \% / \mathrm{FT})\left(17.5^{\circ}\right)+(2$ GIRCERS $)\left(30^{4} / \mathrm{FT}\right)\left(24^{\circ}\right)=2280^{*}$

OPTION 1:

OPTION 2:

ALTHOUGH OPTION 1 is SLIGHILY HEAVIER WN ONERALL STEEL, BEAM \& GIRDER DEPTH IS EQUAL, SMPLIFYING CONNECTIONS :CHOOOE OPTION 1.

Alternative System 2: Composite Steel Framing

from vulcraft catalog:
TRY 2VLI 20, $2^{*} \mathrm{NWL}$ TOPPIN $\rightarrow 4^{\circ}$ TOTAL

- 39PSF
- MAX UNSHORED CLEARSPAN $(2 S P A N)=10^{\prime} 10^{\prime \prime}>8.75^{\prime}$
$L L=40 P S F+10=50$
$D L=D E C K+O L$ sLeERAMPDese $+S W+F I$ Nisims
$=39+10+5+2$
$=56 \mathrm{PSF}$

INTERIOR $W_{U}=1.2$ OL $+1.6 L \mathrm{~L}=1.2(56)+1.6(50)=1470 \mathrm{SF}\left(8.7 \mathrm{~s}^{\prime}\right)=1.29 \mathrm{kLF}$

$$
M_{u}=\frac{w L^{2}}{8}=\frac{(1.29)\left(24^{2}\right)}{8}=93 k \cdot F T
$$

ASSUMING: $a=1^{\prime \prime} \rightarrow Y_{2}=t_{\text {anca }}-\frac{a}{2}=4-\frac{1}{2}=3.5$
[TABLE 3-21] DECK $1, N W C, f^{\prime} C=4 k s 1,3 / 4 * \phi$ STUO $\rightarrow 1$ STU $/ R \cdot G^{\prime \prime}=17.2 \mathrm{k}$ $25100 / R 1 B=14.6 \mathrm{k}$

DETERMINE POSSIBLE BEAM SIZES: [TABLE 3-RG]

$$
\begin{aligned}
& \text { W10×12 } \rightarrow \sum Q_{N}=115 \rightarrow 115 / 17.2=6.68 \rightarrow 7 \times 2=14 \text { stow }_{\text {BEAn }} \\
& W 10 \times 15 \rightarrow \Sigma Q_{N}=83.8 \rightarrow 838 / 17.2=4.87 \rightarrow 5 \times 2=10 \mathrm{smos} / \mathrm{Bran} \\
& W_{\text {Wex }} 17 \rightarrow \Sigma Q_{N}=62.4 \rightarrow 62.4 / 17,2=3.63 \rightarrow 4 \times 2=8 \text { stuos } / 3 \text { EAM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WOK22 } \rightarrow \Sigma Q_{N}=81.1 \rightarrow 51 / 17,2=4.72 \rightarrow 5 \times 2=10 \operatorname{stos} / \mathrm{BEAM}
\end{aligned}
$$

CHECKECONOMY

$$
\begin{aligned}
& W 10 \times 12 \rightarrow 12(24)+14(10)=428 * \text { COWTINUE } w / w / 0 \times 12 \\
& W 10 \times 15 \rightarrow 15(24)+10(10)=460 * \\
& W 10 \times 17 \rightarrow 17(24)+8(10)=488^{*} \\
& W 10 \times 19 \rightarrow 19(24)+10(10)=556 * \\
& W 10 \times 22 \rightarrow 22(24)+10(10)=628^{*}
\end{aligned}
$$

CHECK KSSUMPTION:

$$
a=\frac{\sum Q_{N}}{0.85 f^{\prime} \text { clbeff }}=\frac{115}{0.85(4.5)(36)}=0.84^{\prime \prime}<1^{\prime \prime} \therefore Y_{2}=3.5^{\prime \prime} \text { is CONSERVATIVE }
$$

CHECK UNSHOREO LEMGTH:
SELEET CONTROLING LOAD CAEE

$$
\begin{aligned}
& 1.40 \mathrm{~L}=1.4\left(\widetilde{56}_{490}^{490}(8.75)+1.4(12)=703 \mathrm{PLF}\right. \\
& 1.20 \mathrm{~L}+1.6 \mathrm{LL}=1.2(490+12)+1.6(50)=683 \mathrm{PLF}
\end{aligned}\{\therefore 1.40 \mathrm{~L} \text { CONTROLS }
$$

$$
M_{L}=\frac{(0.703)\left(24^{2}\right)}{8}=51 \mathrm{k} \cdot \mathrm{FT} \rightarrow\left[\text { TABLE 3-2] W/10×12: } 0 M_{N}=46.9<51 \mathrm{k} \cdot \mathrm{FT}\right.
$$

NOTEBDOK SUB B ALT. SYSTEM 2 COMPOSITE
NOTEBDOK SUB B ALT. SYSTEM 2 COMPOSITE
32
SELECT WIOXIS $\rightarrow \phi M_{N}=60 \mathrm{KFT}>5 \mathrm{k} \cdot \mathrm{FT}$ J \therefore CONTINUE $W /$ WIOK 15
SELECT WIOXIS $\rightarrow \phi M_{N}=60 \mathrm{KFT}>5 \mathrm{k} \cdot \mathrm{FT}$ J \therefore CONTINUE $W /$ WIOK 15
FOR WIONI $\rightarrow I_{x}=68.9$:n ${ }^{4}$
FOR WIONI $\rightarrow I_{x}=68.9$:n ${ }^{4}$
CHECK WET CONCRETE \triangle :

$$
W_{W C}=(56)(8.75)+15=505 P L F=0.51 \mathrm{kLF}
$$

$$
\left.\Delta_{w c}=\frac{5(0.51)\left(24^{4}\right)(172.8)}{384(29000)(68.9)}=1.9^{\prime \prime}\right)
$$

$$
\text { MAX } \Delta_{u c}=\frac{b}{240}=\frac{(24 \times 12)}{240}=1.2^{\prime \prime} \quad \int \text { NOT PASS DEFLECTION CHECK }
$$

 $\angle Q_{N}=81.1 \rightarrow 81.1 / 17.6=4.6 \rightarrow 5 \times 2=10 \mathrm{mroc} / 66+\mathrm{M}$ $a=\frac{81.1}{(0.85)(4.5)(36)}=0.59<1^{\prime \prime}: \therefore 0 \mathrm{k}$
CHECK UWSHORED LEMGTH:

$$
\begin{aligned}
& 1.40 \mathrm{~L}=1.4(56)(8.75)+1.4(22)=717 \mathrm{PLF} \\
& 1.20 \mathrm{LH} 1.6 L L=1.2(490 \cdot 22)+1.6(50)=695 \mathrm{PLF} \\
& M_{U}=\frac{(0.717)\left(24^{2}\right)}{8}=52 \mathrm{k} \cdot \mathrm{FT}
\end{aligned}
$$

ϕM_{N} FOR WIOX22 $=97.5>52 \mathrm{~J}$
CHECK WET CONCRETE \triangle :

$$
\begin{aligned}
& W_{\sim C}=56(8.75)+22=512 \text { PLF } \\
& \Delta_{W C}=\frac{5(0.512)\left(24^{4}\right)(1728)}{384(29000)(118)}=1.12^{\prime \prime}<4 / 240=1.2^{\prime \prime} \therefore \text { USE W } 10 \times 22
\end{aligned}
$$

 DETERMINE CAMBER:
 SINCE \(\Delta_{w C}<4 / 240 \therefore\) NO CAMBER NEEDED
 CHECK EXTERIOR BEAM B/C AODL EXTERIOR WALL WEIGHT
$L L=40$ PSF $+10=50$ PSF
$D L=56$ PSF
$O L_{\text {mat }}=289 \mathrm{PLF}$
$1.4 \mathrm{DL}=1.4\left(56 \times \frac{9.75}{2}\right)+1.4(289)=748 \mathrm{PLF}$
$1.2 \alpha+1.64 L=1.2\left(56 \times \frac{275}{2}\right)+1.2(289)+1.6(50)=721$ PLF
$M_{v}=\frac{(0.748)\left(24^{2}\right)}{8}=54 \mathrm{k} \cdot \mathrm{FT}$
FROM PREV PG: $\varnothing M_{N}$ FOR W1O $22=97.5 \mathrm{~K} \cdot \mathrm{FT}>54 \mathrm{k} \cdot F T \therefore$ W 10×22 OK TO USE
FOR EXTERIOR BEAM
CHECK Δ_{L} :
[TABLE 3-20] ILB FOR WIO $\times 22=214 \mathrm{in}^{4}$
$W_{L L}=(50)(8.75)=0.44 \mathrm{kLF}$
1000
$\Delta_{L L}=\frac{5(0.44)\left(24^{*}\right)(1728)}{384(2900)(214)}=0.53$ "
$\Delta_{\text {Lumax }}=\frac{h}{360}=\frac{24(12)}{360}=0.8^{\prime \prime}>0.53^{\prime \prime} \therefore$ ok $\sqrt{ }$
determine girder design:

$$
\begin{aligned}
& \text { SPAN }=17.5^{\prime} \\
& \text { SPAR } 1 N=2 G^{\prime} \\
& \text { FROM PG } 27 \rightarrow w_{c}=0.131 \mathrm{KLF}
\end{aligned}
$$

$$
P_{U}=(0.16 k)\left(2 \times \frac{24}{2}\right)\left(17.5^{\prime}\right)=62 \mathrm{k}
$$

$$
M_{v}=\frac{P_{L}}{4}=\frac{(62)(17.5)}{4}=270 \mathrm{k} \cdot \mathrm{FT}
$$

$$
\text { Assume } a=1^{\prime \prime} \therefore r_{2}=4.0 .5=3.5^{\prime \prime}
$$

$$
W 14 \times 26 \rightarrow \Sigma Q_{N}=279 \rightarrow 279 / 7.2=17 \times 2=34 \rightarrow \Sigma Q_{N}=(2)(66.5)(14.6)+1(17.6)=499
$$

$$
W 14 \times 30 \rightarrow \sum Q_{\omega}=183 \rightarrow 183 / 77.2=11 \times 2=22 \rightarrow \sum Q_{N}=(2)(5.5)(14.6)+12(17.6)=372
$$

$$
W 14 \times 34 \rightarrow \Sigma Q_{N}=175 \rightarrow 175 / 17.2=11 \times 2=22 \rightarrow \Sigma Q_{N}=(2)(5.5)(14.6)+12(17.6)=372
$$

$$
w 16 \times 26 \rightarrow 5 Q_{N}=96 \rightarrow 96 / 17.2=6 \times 2=12
$$

CHECK a ASSUMPTION:

CHECK UNSHORED LENGTH:

$$
\begin{aligned}
& 1.4 D L=1.4(56)(24)+1.4(26)=1918 \mathrm{PLF} \\
& 1.20 L+1.6 L L=1.2(1344+26)+1.6(50)=1724 \mathrm{PLF} \\
& M_{u}=\frac{1.92(17.5)^{2}}{8}=73.5 \text { K.FT } \\
& \text { [TABIE 3-2] } \mathbf{W} 14 \times 30 \rightarrow \phi_{M_{N}}=177 \mathrm{KFT}>73.5 \\
& I_{x}=291 \text { in }^{4}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{\sum Q_{N}}{0.85 f^{\prime} c b_{E f f}}=\frac{183}{0.85(4.5)(526)}=0.91^{\prime \prime}>1^{\prime \prime}: .0 \mathrm{k} V
\end{aligned}
$$

NOTEBOOK SUB B ALT SYSTEM 2 COMPOSITE 35.
CHECK $\Delta_{\text {We: }}$

$$
\begin{aligned}
& W_{\text {we, camenen }}=56(17.5)+30=1010, \text { PLF } \\
& \Delta_{\text {we }}=\frac{5(1.01)(17.5)^{4}(1728)}{(384)(29000)(245)}=0.30^{\prime \prime} \\
& \Delta_{\text {we, mux }}=\frac{L}{240}=\frac{(17.5)(12)}{240}=0.88^{\prime \prime}>0.3^{\prime \prime} \therefore 0 \mathrm{~kJ}
\end{aligned}
$$

CHECK ECONOMY:

$$
\begin{aligned}
& W 14 \times 36 \rightarrow 26(17.5)+34(10)=795^{\#} \\
& W 14 \times 30 \rightarrow 30(17.5)+22(10)=745^{\#} \quad \therefore \text { SELECT W14 } \times 30[22]
\end{aligned}
$$

In SUMMARY:

USE 2VLI 20 DECKING, $2^{\prime \prime N W C}$ TOPPING (44^{*} TOTAL)

BOTH SYSTEMS ARE VERY SPMILAR, HOWEVER EVEN THOUOH THE NON COMPOSITE SYSTEM HAS MORE MEMBERS, THEY ARE LIGHTER \& SHALLOWER, ALOWING FOR A GREATER
FLOOR-FLOOR HEIGHT. THEREFORE I WURO RECOMMENO THE NONCOMPOSITE SYSTEM.

Alternative System 3: Hambro D-500 Composite Girder

NUTEBOOK SUB B ALT. SYSTEM 3 HAMBRO D-500 3.7

- SECTION CUT ALONG COLUMN LINE 8:

SPAN GIRDERS IN LONG DIRECTION \therefore SPAN $=24^{\prime}$
TYP. JOIST SPACING = $4^{\prime \prime} 11 / 4^{\prime \prime}=49^{1 / 4 " ~ T O ~ A C C O M O D A T E ~} 48^{\prime \prime}$ PLYWOOD FORMS

FROM [TABLE 6]: DSOO HAMGRO CLEAR SPAN TABLES:
CHOOSE RESIDENTIAL, $t_{s}=3^{\prime \prime} \therefore L L=40$ PSF, OL $=65 \mathrm{PSF}$
SPAN $=24^{\prime} \angle 25^{\prime}$ (FROM TABLE) \therefore CONSERUATIVE \rightarrow JOIST DEPTH $=10^{\prime \prime}$
MIN $t_{s}=25^{\prime \prime}<3^{\prime \prime} \therefore$ OK $\sqrt{ }$ ASSUME JOIST WEUGHT(RESIOEMTIAL) 4.5 PSF
$F^{\prime} \mathrm{C}=3000 \mathrm{PSI}, F_{Y}=50 \mathrm{kSI}$
$\Delta_{L}=4 / 360$
ACCORDIAG TO PG 2 HAMBRODG: LOAD $C O M B O=1.4 \mathrm{OL}+1.7 \mathrm{LL}$
$w=1.4(65 \mathrm{H} .5)+1.7(50)=179 \mathrm{PSF}=0.179 \mathrm{KSF}\left(24^{\prime}\right)=4.3 \mathrm{kLF}$
$+M_{\text {max (EXT) }}=\frac{w L_{1}^{2}}{11}=\frac{(4.3)\left(\frac{31.25}{12}\right)^{2}}{11}=2.7 \mathrm{~K} \cdot \mathrm{FT}$
$-M_{\text {MAX (ExT) }}{ }^{2} \frac{w b_{1}^{2}}{10}=\frac{(4.3)\left(\frac{3.125}{12}\right)^{2}}{10}=2.9 \mathrm{k} \cdot \mathrm{FT}$
$+M_{\max (1 \mathrm{NT})}=\frac{W L_{2}^{2}}{16}=\frac{(4.3)\left(\frac{49.25}{12}\right)^{2}}{16}=4.6 \mathrm{k} \cdot \mathrm{FT}$
$-M_{\max (1 \mathrm{NT})}=\frac{w L_{2}{ }^{2}}{11}=\frac{(4.3)\left(\frac{49.35}{12}\right)^{2}}{11}=6.6 \mathrm{~K} \cdot \mathrm{FT}$

CONCENTRATED LL REQUIREMENTS:
[5.002]
[TABLE 2] HAMBRO DG:ASSUME MIN CONCENTRATED LOHO = IOO年 FOR RESIOENTIAL [TABLE 3] HAMBROOG: $1000 \mathrm{H}<2000 \mathrm{H} / \mathrm{MIN}$

$$
\therefore \text { PROVIDE SIMGLE LAYER MESH THROUOHCUT } B / 6 s_{1}=31.125^{\circ}<48^{\prime \prime}
$$

OEFLECTION CHECK:
[PG2] HARBRO D $G \rightarrow$ HAMBRO $21 / 2^{\prime \prime}$ SLAB/4. $11 / 4^{\prime \prime}$ SPAN

$$
I_{C}=\frac{12\left(2.5^{3}\right)}{12}=15.6 \mathrm{in}^{4} \rightarrow \frac{\theta}{L}=\frac{L^{3}}{I_{C}}=\frac{4.1^{3}}{15.6}=4.4
$$

NORMAL $71 / 2^{\prime \prime}$ SLAB/ 20° SPAN

$$
I_{c}=\frac{12(7.5)^{2}}{12}=422 \operatorname{in}^{4} \rightarrow \frac{\Delta}{2}=\frac{L^{3}}{I_{c}}=\frac{20^{3}}{422}=19
$$

$\therefore \frac{A}{L} H A M B R O \ll \frac{\Delta}{L}$ NORMAL \rightarrow DEFLECTION OK \downarrow

System Comparison

Table 8: Several different floor systems are compared by various factors for AC Hotel Philadelphia.

Floor System Comparison				
Criteria	Girder Slab (Existing)	Non-Composite Steel	Composite Steel	Hambro D-500 Composite
System Info				
Total Depth	10"	$16^{\prime \prime}$	18"	13"
Fire Rating	3 hr	2 hr	2 hr	2 hr
2 hr Fire Rating?	yes	yes	yes	yes
Lbs/ft^2	83	50	46	41
Cost/ft^2	\$16.01	\$11.17	\$12.04	\$8.38
Vibrations	minimal	likely	likely	very likely
Formwork	no	no	no	yes
Considerations				
Pros	Rapid construction \& assembly (premanufactured), underside can be left unfinished, floor design flexibility	Lightweight	Lightweight, increased stiffness,	Lightweight, reusable formwork \& rollbars, increased rigidity from composite, plenums allow for MEP systems
Cons	Heavy, expensive	Large total depth	Largest total depth	Formwork needed, vibrations
Feasible?	yes	yes	yes	yes

Lateral Analysis

The scope of the analysis for Notebook Submission C includes an in-depth lateral force evaluation of 230 N. $13^{\text {th }}$ St. A 3D model was created in RAM Structural System to model the lateral force resisting elements of the structure and examine how the forces are distributed to the lateral elements. Results from RAM were compared to calculations computed by hand to verify if the values make sense. Appendix B contains more relevant tables and visuals for Notebook Submission C that are not included in the report.

Figure 5: 3D model of AC Hotel Philadelphia created in RAM Structural System. Certain elements of the building that do not have an impact on my investigation were not modeled.

Figure 6: 3D representation of AC Hotel Philadelphia provided by Holbert Apple Associates.

Lateral Resisting Elements

The lateral system for $230 \mathrm{~N} 13^{\text {th }}$ St. is made up of eight braced frames spanning 13^{\prime} to 20^{\prime} in both orthogonal directions. They are positioned in a configuration that keeps the COR towards the center of the structure which helps reduce eccentricity. Since braced frames are the most rigid steel lateral-resisting element, fewer frames are required which allows more spatial opportunities for the architects' floor layout.

Figure 7: Typical floor plan showing all of the lateral resisting elements. BF 1-5 are concentric braced frames, BF-6 is an eccentric braced frame and BF 7-8 are regular braced frames.

Modeling Approach/Assumptions/Constraints

To model AC Hotel Philadelphia, RAM Structural System was selected. The modeling process began with establishing the grid coordinates for the building as per the construction drawings. Once the grid was in place, the various floor plans within the building were modeled (Level 1, Level 2, Level 3, Typ. Level, Penthouse Level and Roof). Only columns supporting the braced frames were considered to be lateral columns, all others are gravity columns. To help simplify the model, only beams that had impact on the lateral resisting elements were modeled. It was also decided to not model the cellar level (beneath grade) because the amount of time it would have taken to model does not compare to the minimal amount it would have changed the results. Once the structure was modeled, member sizes were assigned to all of the lateral beams, columns and braced frames. Surface loads and line loads were then applied where appropriate, and mass dead loads were inserted in place of the mechanical equipment and any other substantial loads (i.e. pool on the second level). After the loads were imputed, the fixity of the members were applied. For beams and braces, a pinned connection was chosen for the major \& minor axes, and fixed for torsion on each end. The columns are all fixed connections with the exception of the bottom of the columns at the base of the structure, where minor/major axes are pinned and torsion is fixed. As a way to reduce the amount of errors in the building model, the "integrity check" command was ran at least one time per floor. This made it much easier in the end since locating an error on an individual floor is much easier than finding an error within the whole building. To allow forces to be distributed into the resisting elements, nodes in RAM were released. It is important to keep some of the nodes connected, otherwise complications will arise within the program. While modeling, the following assumptions were also made for simplification:

- 6" slab edge overhang
- Dissymmetrical beam conversion (D-beams not available in RAM)
- DB8x37=W8x35
- DB8x61-W8x58
- DB8x65=W8x67
- Only modeled (2) stair openings \& (1) elevator shaft opening
- BF-6 ($3^{\prime} 3^{\prime \prime}$ on both sides)
- Beams considered rigid for frame rigidity calculations
- Diaphragm for all levels considered rigid
- Extra beams/columns inserted where necessary to avoid complications within RAM (these do not affect any output numbers)
- From the Penthouse level and above, there is a curtainwall/terracotta rain screen system, so the value of 27.5 psf was reduced to 15 psf for the dual system
- P-delta effects are included for RAM analysis

COM \& COR

The center of mass (COM) and center of rigidity (COR) were calculated both by hand and by RAM for the typical level in the building. Both the COM \& COR varied from floor-floor, but the variation was minimal, so evaluating Level 4 is a reasonable approximation for the entire structure. The following diagrams illustrate the approximate rigidities of the braced frames.

Notebook Submission B

The values above seem reasonable because the COR was found to be in a location that lies in the middle of all of the LRE (Lateral Resisting Elements). The COM was found to be near the center of the floor which also makes sense because the floors do not contain any elements which would drastically move the COM from the middle. Detailed spreadsheets for COM and COR can be found in Appendix B.

Direct Shear \& Torsional Rigidity

When analyzing how lateral loads find their way into buildings, it is important to keep in mind that load follows stiffness. To find the direct shear in each lateral resisting element, this proportional distribution of forces was applied and the results can be found below. Torsional shear takes into account the amount of eccentricity the building experiences. Larger eccentricities occur when the COR is not near the COP (which acts at the middle of the structure). In the specific case of AC Hotel Philadelphia, both hand calculations and RAM found the COR to be within one foot of the COP, which explains why the torsional shear is miniscule. Results for torsional shear can also be found below. Full results and calculations can be found in Appendix B.

NOTEBCOK SUBMISSIONC TORSIONAL RIUIDITY
EVALLATED FOR LEVEL 4 (N-SDIRECTION)

$B F-1=B F-2=B F \cdot 3=B F \cdot 4 \therefore$ FORCE ${ }_{6}$ INEACH FRRAME $=\frac{22.2}{4} \approx 6 \mathrm{k} /$ FRAME
$e=$ DISTANAE FROM COP TO LATERAL FORCE RESISTING ELEMENT $=47-46.6=0.4$
TORSIONAL SHEAR
$M_{T}=V \cdot e=22.5(0.4)=9 \mathrm{Kft}$

SINCE ALL OF THE TORSIONAL SHEARS ARE VERY SMALLVALUES, THEY ARE ASSUMED TO BE NEGLIGIBLE WHICH MEANS THAT DIRECT SHEAR ON THE BUILDING WILL CONTROL.

* MAKES SENSE THAT TORSIONAL RIGIDITY IS VERY LOW DUE TO THE fact that cop acor are extremely close.

Wind Load Comparison

Table 9 and 10 below are tabulated wind pressure values for the various levels of AC Hotel Philadelphia. Minor differences in pressures are due to the elevation they were analyzed at. Hand calculations were analyzed at each floor and RAM uses mid-floor elevations to do so. Hand calculations include the elevator roof which was not modeled in RAM. The largest variation in calculations is in the building period calculation. Hand calculations yield a building period of 1.55 s compared to RAM's calculated building period of 2.46 s . The reason these values vary so greatly is the fact that in ASCE7-05, section 12.8.2, it states that it is permitted to use the approximate building period, Ta , for the fundamental period, T for hand computations, while RAM actually solves for the fundamental building period.

Table 9: Tabulated wind pressures calculated by hand for various heights

Story	$\mathrm{z}[\mathrm{ft}]$	kz	qz [psf]	
Elevator Roof	191.02	1.19	20.97	
Roof	181.00	1.17	20.62	
Penthouse	163.25	1.13	19.92	
Penthouse Deck	163.00	1.13	19.92	
	14	149.25	1.11	19.56
	13	138.75	1.09	19.21
	12	128.25	1.06	18.70
	11	117.75	1.03	18.21
	10	107.25	1.01	17.80
	9	96.75	0.98	17.27
	8	86.25	0.96	16.99
	7	75.75	0.91	16.09
	6	65.25	0.87	15.33
	5	54.75	0.83	14.63
	4	44.25	0.78	13.75
	3	33.75	0.72	12.74
	2	15.66	0.57	10.05
	1	0	0.57	10.05

Applied Story Forces (N-S)

Table 11: Hand calculations showing the applied story forces in the North-South direction.

Force Level	Force [k]
FER	13.5
FR	36.9
FP	23.4
FPD	18.2
F14	31.2
F13	26.7
F12	26.3
F11	25.9
F10	25.6
F9	25.1
F8	24.9
F7	24.2
F6	23.5
F5	23
F4	22.2
F3	29.1
F2	30.8
F1	14.3
Total	444.8

Applied Story Forces (E-W)

Table 13: Hand calculations showing the applied story forces in the North-South direction.

Force Level	Force [k]
FER	9.5
FR	26.1
FP	16.7
FPD	13.0
F14	22.3
F13	19.1
F12	18.9
F11	18.7
F10	18.5
F9	18.3
F8	18.2
F7	17.8
F6	17.4
F5	17.1
F4	16.7
F3	22.2
F2	24.3
F1	11.3
Total	$\mathbf{3 2 6 . 1}$

Table 12: RAM output showing the applied story forces in the North-South direction.

Level	Ht ft	Fy kips
Roof	175.38	12.22
Penthouse Level	165.34	32.28
Level 14	148.59	37.66
Level 13	133.59	29.74
Level 12	123.09	24.12
Level 11	112.59	23.76
Level 10	102.09	23.38
Level 9	91.59	22.97
Level 8	81.09	22.53
Level 7	70.59	22.04
Level 6	60.09	21.49
Level 5	49.59	20.87
Level 4	39.09	20.08
Level 3	28.59	21.02
Level 2	18.09	28.77
		362.93

Table 14: RAM output showing the applied story forces in the North-South direction.

Level	Ht ft	Fx kips
Roof	175.38	7.38
Penthouse Level	165.34	20.55
Level 14	148.59	24.63
Level 13	133.59	19.42
Level 12	123.09	15.73
Level 11	112.59	15.47
Level 10	102.09	15.20
Level 9	91.59	14.91
Level 8	81.09	14.59
Level 7	70.59	14.25
Level 6	60.09	13.86
Level 5	49.59	13.42
Level 4	39.09	12.87
Level 3	28.59	13.57
Level 2	18.09	22.08
		237.92

After analyzing the story forces, it is easy to see that my hand calculations yielded slightly higher forces at all elevations which results in a much larger overall force in each direction. All though my forces are off, they are proportional, therefore, the error is most likely from not distributing the pressures correctly to each floor by tributary height.

Seismic Load Comparison

Seismic load calculations varied significantly from my hand calculations to the results RAM produced. The main reason my hand calculations found a building weight much greater (approx. 3000k) than RAM is due to the fact some members in RAM were not modeled because it was not required to have a full 3D model for the assignment. Also, as noted in the wind calculations above, the building period used for hand calculations was nearly double what RAM used. With this said, AC Hotel Philadelphia was designed with a base shear of 92 k compared to 84.4 k from RAM which is reasonably close. If the two changes were made in the 3D RAM model, the results in Table 15 would be much closer to what they should be.

Table 15: Hand calculations showing the applied story forces in both orthogonal directions under seismic conditions.

Story	hx [ft]	Fx
Elevator Roof	191.0	8.5
Roof	181.0	23.4
Penthouse	163.3	45.2
Penthouse Deck	163.0	44.2
14	149.3	42.4
13	138.8	35.8
12	128.3	30.5
11	117.8	25.8
10	107.3	21.4
9	96.8	17.4
8	86.3	13.8
7	75.8	10.7
6	65.3	7.9
5	54.8	5.6
4	44.3	3.6
3	33.8	2.2
2	15.7	0.8
1	0.0	0.0
Total	$\mathrm{V}=$	339.2

Table 16: RAM output showing the applied story forces in both orthogonal directions under seismic conditions.

Level	Ht ft	Fx kips
Roof	175.38	12.00
Penthouse Level	165.34	14.84
Level 14	148.59	11.87
Level 13	133.59	9.54
Level 12	123.09	8.09
Level 11	112.59	6.80
Level 10	102.09	5.60
Level 9	91.59	4.53
Level 8	81.09	3.58
Level 7	70.59	2.72
Level 6	60.09	1.98
Level 5	49.59	1.36
Level 4	39.09	0.85
Level 3	28.59	0.40
Level 2	18.09	0.24
		84.42

Controlling Load Case

After analyzing both wind and seismic forces on the building, wind was determined to be the governing load case. Hand calculations show much higher values for seismic conditions, but knowing why the values vary so greatly from RAM verify that wind will control. This was also verified by looking at the overall geological location of the build site (Philadelphia, Pa), and realizing that wind would most likely control on the East coast. Therefore, the following checks will use values from wind conditions to verify the lateral systems and the members that comprise it.

Lateral System Checks
 Allowable Drift

$$
\text { Allowable drift }=\frac{h}{400}=\frac{191 * 12}{400}=5.73^{\prime \prime}
$$

Actual maximum drift (from RAM output) $=4.74$ " @ Roof Level <5.73 " therefore ok $\sqrt{ }$

Figure 8: Deflected shape under wind conditions in the N -S direction.

In ASCE7-05, Figure 6-9, design wind load cases are presented. Of the four cases, case 1 controlled which is a "full design wind pressure acting on the projected area perpendicular to each principal axis of the structure, each axis considered separately." In RAM, this is equivalent to wind case 2 which analyzes the building in the N-S direction. This makes sense because the building is shallower in the N-S direction, allowing larger overall drift values. The largest drift due to seismic activity is only $1.71^{\prime \prime}$ at the roof level which also confirms that wind controls over seismic.

Table 18: Possible load cases considered in RAM.
LOAD CASE DEFINITIONS:

W1	Wind	Wind_IBC09_1_X
W2	Wind	Wind_IBC09_1_Y
W3	Wind	Wind_IBC09_2_X+E
W4	Wind	Wind_IBC09_2_X-E
W5	Wind	Wind_IBC09_2_Y+E
W6	Wind	Wind_IBC09_2_Y-E
W7	Wind	Wind_IBC09_3_X+Y
W8	Wind	Wind_IBC09_3_X-Y
W9	Wind	Wind_IBC09_4_X+Y_CW
W10	Wind	Wind_IBC09_4_X+Y_CCW
W11	Wind	Wind_IBC09_4_X-Y_CW
W12	Wind	Wind_IBC09_4_X-Y_CCW

Level: Roof, Diaph: 1

LdC	Disp X in	Disp Y in	Theta Z rad
W1	3.21159	0.15999	0.00214
W2	-0.02567	4.74404	-0.00025
W3	2.29485	0.02972	0.00040
W4	2.52254	0.21027	0.00281
W5	0.19036	3.72507	0.00204
W6	-0.22886	3.39099	-0.00242
W7	2.38944	3.67803	0.00141
W8	2.42794	-3.43803	0.00179
W9	1.54949	2.56553	-0.00152
W10	2.03467	2.95151	0.00364
W11	1.57837	-2.77151	-0.00124
W12	2.06355	-2.38554	0.00393

To keep values comparable, inter-story drifts were evaluated for the same wind case (case 1) that controlled the design ($\mathrm{N}-\mathrm{S}$ direction). Note that the actual drifts are compared to $\mathrm{h} / 400$ drift for all building level elevations

Drift Comparison

Figure 9: Actual drift compared to allowable drift (h/400) for various elevations of AC Hotel Philadelphia

Table 9: Displays whether or not each level meets the drift criteria.

Level	Elevation [ft]	Total Drift @ Particular Level [in]	Allowable Drift $(\mathrm{h} / 400)$ [in]	Acceptable Drift?
Roof	181	4.74	5.43	yes
Penthouse	163	4.44	4.89	yes
14	149.25	3.87	4.48	yes
13	138.75	3.35	4.16	yes
12	128.25	2.99	3.85	yes
11	117.75	2.63	3.53	yes
10	107.25	2.28	3.22	yes
9	96.75	1.94	2.90	yes
8	86.25	1.61	2.59	yes
7	75.75	1.3	2.27	yes
6	65.25	1.03	1.96	yes
5	54.75	0.77	1.64	yes
4	44.25	0.55	1.33	yes
3	33.75	0.36	1.01	yes
2	15.66	0.22	0.47	yes
1	0	0	0.00	N/A

In the table above, all of the levels meet the drift requirement of $\mathrm{H} / 400$.

Member Spot Check for Lateral Loads

The area under consideration is a typical level (level 4). Elements under consideration are marked. BF-1 was selected because it resists forces in the N-S direction which is the axis being considered for lateral forces, making the braces in that direction more critical.

Figure 10: Typical floor plan revealing lateral elements/locations and the braced frame being studied.

BF-1 (Column line 3, spanning B-C)

Column: W14x211
Beam: W14x26
Brace: HSS $6 \times 6 \times 1 / 2$

```
NOTEBOOK SUB.C MEMBER SFOT CHECKS
COLUMN CHECK:
    COLUMN C-3 ON LEVEL 4:W14\times26
            P=48.8k }->\mathrm{ P DUE TO GRAVITY LOADS
            Mra}=5.3\textrm{kFt
            Mry=0.15 kft
                At}=(15.97)(1.45)=183\mp@subsup{\textrm{ft}}{}{2}<400 { NOT REOUCIBLE
    DEAO LOADS: LIVE LOAOS:
        K-TYPFLOOR =95 PSF
            -EXT. GREEN ROOF : G8PSF
                                -CORRIDOR = lOOPSF }\checkmark\mathrm{ PMRTITIONS
                            *-GUEST ROOM=40FSF +10= SOPSF
            - INT. GREEN ROOF = 138PSF
                            x-ROOF(GAROEN)=1OORSF
        SNOW LOAO =1895F
            CONTROLLING LOAO COMBINATION (VERIFIED W/RAM V):I.2D+1.6L+0.5LR
    Pu}=[12(8,10)+138]+1.6(50)+0.5(100)(1835\mp@subsup{F}{}{2})=263k=\operatorname{Pr
        Mux}=1.6(5.3)=8.5 f+
            M\nuy = 1.6(-0.15)=0.24ftk
            [STEEL. MANUAL APPENDIX 7] IN BRNCED FRAMES }->k=1,
                L
            [TABLE 6-1] FOR WIUx>-11:
            p}=0.387\times1\mp@subsup{0}{}{-3
            pPr}=(0.387\times1\mp@subsup{0}{}{-3})(263)=0.102<0.
                    \ppr+bxMrx + byMry 
BEAM CHECK:
            LEVEL Y SPANNING FROM B-C (W14*26)
            FROM RAM: MMMA=ISIKFF
            CONTROLLING COMBINATION = 1.20+0.5L*0.5LE
```



```
                        Mux =-7.53kFT }\quad\sigma\mp@subsup{M}{nx}{}=15075\textrm{FkFT
                        Muy= 0.02kFT, OMnn=20.77\textrm{kC1}
```


NOTEBCOK SUBC. MEMBER CHECKS CONT.
BRACECHECK: HSS $6 \times 6 \times 1 / 2$
[steel manlal table 5-5] conirolling lono chse: 1.0W
FOR HSSG×6x1/2: YIELDING - $\varnothing P_{n}=403 \mathrm{k}$
RUPTURE $-8 P_{n}=318 k$
FROM RAM OUTUU \rightarrow TOTAL STORY GHEAR QLEVEL $4=311.7 \mathrm{k} / 4$ FRMMES $=80 \mathrm{k} /$ FRNE

ASSUME TENSION MEMBER RESISTS FULL LOAD
FORCE IN TENSION MEMBER $\rightarrow 80 \mathrm{k}=\mathrm{F} \cos \theta$
$80=F r o s 50.5$
$F=126$
$126 k \ll 313 k \& 403 k \therefore$ BRACE IS ADEQUATE

A member analysis check was run in RAM which reveals whether or not member sizes are adequate under various load combinations. The code used to check the members is AISC36005 LRFD. The results are found below.

Figure 11: RAM model displaying individual member stresses. This feature allows the user to see which members are failing under loading conditions and by how much.

The color scale to the right shows the \% capacity each member is experiencing under loading, with red meaning that the member is failing. With this said, it should be noted that all of the failing members are at 101% capacity, therefore, since approximations were made during the modeling process, all members are considered adequate for analysis purposes.

Appendix A

D-Beam ${ }^{*}$ Calculator Reference Tool Version 3.1 (Load \& Resistance Factor Design - AISC 14th Edition)

\square

Fle
She

Design Checks - Full Composite			
Floor LL Defiection	Allow. $\mathrm{A}_{4}=\mathrm{L} / 350$		OK
	$\mathrm{A}_{4}=$	-0.34 in	
	L/360 $=$	-0.80 in	

Desien Principies and Calculations - Slab Desien

Table 1 - Slab Capacity Chart (Total Load in pef)

$\begin{gathered} \text { SLAB } \\ \text { THICKNESS }(t) \end{gathered}$	d	$\begin{gathered} \text { MESH SIZE } \\ F_{y}=60,000 \text { psi } \end{gathered}$	$4^{\prime}-11 / 4^{\prime \prime}$ JOIST SPACING	
			Exterior	Interior
$t \geq 21 / 2^{\prime \prime}$	$1.6{ }^{*}$	$6 \times 6 \mathrm{~W} 2.0 \times \mathrm{W} 2.0$	114	123
		$6 \times 6 \mathrm{~W} 2.0 \times \mathrm{W} 2.9$	157	172
No chair		$6 \times 6 \mathrm{~W} 4.0 \times \mathrm{W} 4.0$	210	230
$t \geq 3^{*}$ with	$2.1{ }^{*}$	$6 \times 6 \mathrm{~W} 2.9 \times \mathrm{W} 2.9$	208	228
1/2" Rod		$6 \times 6 \mathrm{~W} 4.0 \times \mathrm{W} 4.0$	279	306
(shop welded to top chore)				
$t \geq 31 / 2^{\prime \prime}$	$2.6{ }^{*}$	$6 \times 6 \mathrm{~W} 2.9 \times \mathrm{W} 2.9$	256	280
with $21 / 2^{\prime \prime}$		$6 \times 6 \mathrm{~W} 4.0 \times \mathrm{W} 4.0$	347	380

Note: Slab capacities are based on mesh over joists raised as indicated.

Fig. 2

Design Principles and Calculations - Slab Desian

TABLE 3 - Concentrated Loads with 4'-1 $1 / 4^{\prime \prime}$ Joist Spacing

CONCENTRATED LOAD	SLAB THICKNESS	MESH SIZE	$\begin{aligned} & \text { SPECIAL } \\ & \text { REMARKS } \end{aligned}$	
2000 lbs. on $2^{\prime}-6^{*}$ square area (office building)	$21 / 2^{\prime \prime}$	6×6-W2.9	Extra layer (a (1)	$\begin{gathered} \text { No } \\ \text { "chairs" on } \end{gathered}$
		6×6-W2.9	Single layer throughout but $S_{1}=3^{\prime}-10^{\prime \prime}$ mex.	
	3^{17}	6×6-W2.9	Extra layer (1) and (2)	
		6×6-W2.9	Single leyer throughout but $\mathrm{S}_{1}=4^{\prime}-0^{\prime \prime}$ max.	
		6×6-W2.9	Single layer throughout	
2500 lbe on $2^{\prime}-6^{* *}$ * square area plus $2^{\prime \prime}$ asphalt wearing surface	$3^{\prime \prime}$	6×6-W2.9	Extra leyer (1) (1) and (2)	$\begin{aligned} & \text { No } \\ & \text { "chairs" on } \\ & 2 \end{aligned}$
		6×6-W2.9	Single leyer throughout but $S_{1}=2^{\prime}-10^{\circ}$ mex.	
4000 lbe. on $3^{\prime \prime}-6^{*}$ square area (office building for some codes)	$21 / 2^{\prime \prime}$	6×6-W4.0	$8_{1}=4^{3}-0^{\prime \prime}$	$\begin{aligned} & \text { No } \\ & \text { "chairs" on } \\ & \sum \end{aligned}$
	$3^{\prime \prime}$	6×6-W2.9	Extra leyer (1) (1) and (2)	
		6×6-W2.9	Single layer throughout but $S_{1}=2^{\prime}-10^{\prime \prime}$ mex.	

*Some building codes use different bearing areas.

TABLE 4 - Concentrated Loads with $5^{\prime}-11^{1 / 4^{\prime \prime}}$ Joist Spacing

CONCENTRATED LOAD	$\begin{gathered} \text { SLAB } \\ \text { THICKNESS } \end{gathered}$	$\begin{aligned} & \text { MESH } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { SPECIAL } \\ & \text { REMARKS } \end{aligned}$	
2000 lbs on $2^{\prime}-\mathbf{- 6}^{*}$ square area (office building)	$3^{\prime \prime}$	6×6-W2.9	Extra leyer (2 (1) and (2)	$\sum_{i}^{\text {No }}$
4000 lbs on $3^{\prime}-\mathrm{g}^{*}$ square area (office for some codes)	$3^{\prime \prime}$	$6 \times 6-$ W. 0	Extra layer (2.1) and (2)	

Concrete Mix

Top size of the coarse aggregate should not exceed $3 / 4^{n}$ or as dictated by applicable codes. A slump of 4^{n} is recommended.

Design Principles and Calculations - Web Desian

Vertical Shear (Web Design)

The vertical shear forces are assumed to be carried entirely by the web member, forces being calculated using the corventional pin jointed truss analysis method. These assumptions result in calculated ber forces which have been shown by tests to be as much as 15\% higher than the actual values because the slab, acting compositely with \mathcal{Y} section, is stiff enough to transmit some load directly to the support. This is particularly true of web members at the joist ends - those which are subjected to the highest vertical shear.

Effective lengit OF COMPRESSION DIAGONAL

With the web member forces calculated as below, the bar sections are sized to prevent failure in either axial tension or axial compression using conventional working stress design procedures. As per AISC specifications fig. 7 is used as a reference in determining the effective length, k_{l}, of the compression diagonals.

It is important to note that the web members are sized for the specified load capacity including concentrated loads where applicable. Furthermore, the webs are designed according to the latest requirements of the Steel Joist Institute.

NOTE: W Wor longer epan $^{\text {ep }}$
Fig. 7
D500™ ${ }^{\text {m }}$ and MD20009 Geometry

WEB GEOMETRY (in.)				
NOM. DEPTH "d"	$\mathbf{P 1}_{\mathbf{t}}$	$\mathbf{P 1}_{\mathbf{b}}$	$\mathbf{P 2}_{\mathbf{b}}$	\mathbf{P}
8,10	$6 @ 12$	$6 @ 16$	12	20
12	$10 @ 16$	$10 @ 21$	16	24
14,16	$15 @ 24$	$15 @ 32$	20	24
$18,20,22,24$	$19 @ 24$	$19 @ 32$	24	24

Hambro Span Tables

教
TABLE 6: D500TM Clear Span Table

	Residential			Commercial	
Slab Thickness	$3^{\prime \prime}$	$31 / 2^{\prime \prime}$	$4^{\prime \prime}$	$3^{\prime \prime}$	$4 "$
Joist	$\amalg=40 \mathrm{psf}$	$\mathrm{LL}=40 \mathrm{psf}$	$\mathrm{L}=40 \mathrm{psf}$	L = 50 psf	山 = 50 psf
Depth*	DL = 65 psf	DL = 71 psf	DL $=77 \mathrm{psf}$	DL = $\mathbf{8 5} \mathrm{psf}$	DL = 77 psf
$8{ }^{\prime \prime}$	$20^{\prime}-0^{\prime \prime}$	20' - $0^{\prime \prime}$	20' - 0'	$20^{\prime}-0^{\prime \prime}$	20' - 0'
10"	25' - $0^{\prime \prime}$	24' - $\mathbf{6}^{\prime \prime}$	23' - 6"	$25^{\prime}-0^{\prime \prime}$	23' - 6'
$12^{\prime \prime}$	$30^{\prime}-0^{\prime \prime}$	$27^{\prime}-0^{\prime \prime}$	26' - 0'	$30^{\prime}-0^{\prime \prime}$	26' - 0'
14 "	31' - $0^{\prime \prime}$	29' - $\mathbf{6}^{\prime \prime}$	28' - 0'	$31^{\prime}-0^{\prime \prime}$	28' - 0'
$16^{\prime \prime}$	$33^{\prime}-6^{\prime \prime}$	32' - ${ }^{\prime \prime}$	$30^{\prime \prime}-6 \prime$	$33^{\prime}-6^{\prime \prime}$	$30^{\prime \prime}-6^{\prime \prime}$
$18{ }^{\prime \prime}$	$38^{\prime}-0^{\prime \prime}$	$34^{\prime}-0^{\prime \prime}$	$32^{\prime}-6^{\prime \prime}$	$36^{\prime}-0^{\prime \prime}$	$32^{\prime}-6^{\prime \prime}$
$20^{\prime \prime}$	$38^{\prime}-6^{\prime \prime}$	$36^{\prime}-0^{\prime \prime}$	34' - ${ }^{\prime \prime}$	$38^{\prime}-6^{\prime \prime}$	34' - $6^{\prime \prime}$
$22^{\prime \prime}$	$40^{\prime}-6^{\prime \prime}$	$38^{\prime}-6^{\prime \prime}$	$36^{\prime \prime}-6^{\prime \prime}$	$40^{\prime}-6^{\prime \prime}$	$36^{\prime \prime}-6^{\prime \prime}$
24 "	$43^{\prime}-0^{\prime \prime}$	40' - $\mathbf{6}^{\prime \prime}$	38' - ${ }^{\prime \prime}$	$43^{\prime}-0^{\prime \prime}$	38' - ${ }^{\prime \prime}$
${ }^{*}$ Total floor depth $=$ D500 $^{\text {™ }}$ Joist depth plus slab thickness					

Notes:

- Minimurn slab thickness $=21 / 2^{\text {w }}$
- Minimum top chord cover = 1^{n}
- Standard spacing is $4^{\prime}-11 / 4^{\prime \prime}$
- $f_{c}^{\prime \prime}=3,000$ psi, $F_{y}=50 \mathrm{ksi}$
- Live load deflection design standard:
- Table reflects uniform loads only.
- Design clear spans, other than those shown in the above table, require additional structural review.
- Design > 43' - $0^{\prime \prime}$ require additional structural design review.

Maximum Duct Openings

DEPTH (in.)	PANEL (in.)	D (in.)	8 (in.)	R (in. X in.)
8	20	4	4	6×3
10	20	6	5	7×4
12	24	8	6	9×5
14	24	9	7	$\begin{array}{r} 91 / 2 \times 6 \\ 11 \times 5 \\ \hline \end{array}$
16	24	10	8	$\begin{gathered} 101 / 2 \times 61 / 2 \\ 13 \times 5 \end{gathered}$
18	24	11	$81 / 2$	$\begin{array}{r} 11 \times 7 \\ 121 / 2 \times 6 \\ \hline \end{array}$
20	24	$111 / 2$	9	$\begin{aligned} & 12 \times 7 \\ & 13 \times 6 \\ & \hline \end{aligned}$
22	24	12	91/2	$\begin{aligned} & 12 \times 8 \\ & 14 \times 6 \end{aligned}$
24	24	$121 / 2$	10	$\begin{aligned} & 13 \times 8 \\ & 14 \times 7 \end{aligned}$

NOTE: For other configurations, the meximum limite will be defined by the joist geometry.

System	Element	Unit	Unit Cost	Cost/SF
Girder Slab	Precast Hollow-Core			$\$ 10.40$
	Plank (8" thick)			$\$ 1$
	DB8x61 (W8x31)	LF	$\$ 49.08$	$\$ 5.61$
				$\$ 16.01$
Non-Composite	W12x16	LF	$\$ 28.51$	$\$ 6.52$
	W12x26	LF	$\$ 43.01$	$\$ 3.58$
	2.5" NW Topping	CF	$\$ 3.96$	$\$ 1.07$
				$\$ 11.17$
Composite	W10x22	LF	$\$ 39.35$	$\$ 6.75$
	W14x30	LF	$\$ 48.40$	$\$ 4.03$
	2" NW Topping	CF	$\$ 3.96$	$\$ 0.99$
	Weld Studs	per stud	$\$ 1.52$	$\$ 0.27$
				$\$ 12.04$
	Steel Joists	LF	$\$ 11.44$	$\$ 3.27$
	3" Concrete Slab	CF	$\$ 3.96$	$\$ 2.61$
	Formwork	SF	$\$ 1.87$	$\$ 1.87$
	Weld Studs	per stud	$\$ 1.52$	$\$ 0.43$
	Wire Mesh	SF	$\$ 0.20$	$\$ 0.20$
				$\$ 8.38$

Appendix B

Element	Member	\# of members	Weight/ft	Length [ft]	Weight[lb]	Total Weight [k]	Distance From Datum $\mathrm{X}[\mathrm{ft}] \quad \mathrm{Y}[\mathrm{ft}]$		$\mathrm{w}^{*} \mathrm{x}$	$W^{*}{ }^{\text {- }}$
BF-1	W14x211	2	211.0	10.5	4431.0	5.8	13.1	54.5	76.4	318.1
	W14x26	1	26.0	17.3	449.8					
	HSS $6 \times 6 \times 1 / 2$	2	35.2	13.6	957.4			54.5		
BF-2	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	22.9	54.5	133.7	318.1
	HSS $6 \times 6 \times 1 / 2$	2	35.2	13.6	957.4					
BF-3	W14×211	2	211.0	10.5	4431.0					
	W14×26	1	26.0	17.3	449.8	5.8	70.2	54.5	409.8	318.1
	HSS $6 \times 6 \times 1 / 2$	2	35.2	13.6	957.4					
BF-4	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	17.3	449.8	5.8	80.1	54.5	467.6	318.1
	HSS $6 \times 6 \times 1 / 2$	2	35.2	13.6	957.4					
BF-5	W14×176	2	176.0	10.5	3696.0					
	W14×26	1	26.0	19.2	499.2	5.2	63.7	12.5	330.9	64.9
	HSS6x6x1/2	2	35.2	14.2	999.7					
BF-6	W14×176	2	176.0	10.5	3696.0					
	W 21×50	1	50.0	19.2	960.0	5.3	63.7	22.7	335.1	119.2
	HSS6x6x3/8	2	27.5	11.0	605.0					
BF-7	W14x211	2	211.0	10.5	4431.0					
	W14x26	1	26.0	9.8	254.8	5.2	18.8	63.1	97.6	327.9
	HSS $6 \times 6 \times 1 / 2$	1	35.2	14.4	506.9					
BF-8	W14x211	2	211.0	10.5	4431.0					
	W14×26	1	26.0	9.8	254.8	5.2	75.1	63.1	390.0	327.9
	HSS6x6x1/2	1	35.2	14.4	506.9					
Floor Slab	8 " girder slab					695.5	53.6	39.1	37243.8	27207.8
						739.7			39485.0	29320.3
		$\mathrm{X}(\mathrm{COM})[\mathrm{ft}]$	53.4							
		Y (COM) [ft]	39.6							

Element	Element Direction	$\begin{gathered} \hline \text { Dist. From R } \\ \mathrm{X}[\mathrm{ft}] \\ \hline \end{gathered}$	f. Datum $\mathrm{Y}[\mathrm{ft}]$	$\mathrm{R}_{-} \mathrm{x}[\mathrm{k} / \mathrm{in}]$	R_y [k/in]	$\mathrm{R}_{-}{ }^{*}$ \%	${ }_{R} y^{*} \times$
BF-1	Y	13.1	54.5	0	2325.2	0.0	30421.5
BF-2	Y	22.9	54.5	0	2325.2	0.0	53237.5
BF-3	Y	70.2	54.5	0	2325.2	0.0	163326.2
BF-4	γ	80.1	54.5	0	2325.2	0.0	186142.3
BF-5	X	63.7	12.5	2252	0	28150.0	0.0
BF-6	x	63.7	22.7	1035.8	0	23512.7	0.0
BF-7	x	18.8	63.1	1687.6	0	106564.9	0.0
BF-8	X	75.1	63.1	1687.6		106564.9	0.0
Total				4975.4	9300.8	264792.4	433127.6
		$\mathrm{X}(\mathrm{COR})[\mathrm{ft}]$	46.6				
		Y (COR)[ft]	53.2				

