Senior Thesis

Final Report

AC Hotel Philadelphia Philadelphia, Pennsylvania

Submittal in partial fulfillment of the requirements for a baccalaureate degree in Architectural Engineering at The Pennsylvania State University.

Jesse C Bordeau
Linda Hanagan, Advisor
4/8/2016

AC Hotel Philadelphia

Baywood Hotels | 230 North $13^{\text {th }}$ Street, Philadelphia, Pa

Project Information

* Occupancy: Residential transient hotel
* Stories: parking garage + 14 levels above grade + Mech. Penthouse \& Rooftop Terrace
- 192 ft . Above sidewalk grade
* Overall project cost: \$35,000,000
* Size: 107,680 sq.ft.
* Construction Dates: Fall 2015 - Summer 2017
* Project delivery method: Design-Bid-Build

Project Team

Owner: Kurt Blorstad
General Contractor: Clemens Construction Architect: Spg3
Structural Engineer: Holbert Apple Associates
MEP: McHugh Engineering

Features:

* 150 luxury units
* Underground, valet parking via car elevator
* Exclusive restaurant for guests
* Fitness center \& indoor pool
* Green Roofs
- Extensive (2 $2^{\text {nd }} \& 3^{\text {rd }}$ Levels)
- Intensive (Rooftop Terrace)

Structure:

* Foundation
- Mat-slab
- Underpinning of adjacent structures during construction
* Framing
- Structural steel framing
- Composite deck (normal-weight concrete)
- $8^{\prime \prime}$ thick precast hollow-core plank (@4' O.C.) girder slab system
* Lateral System
- Concrete shear walls (lower levels)
- Concentric braced frames (upper levels)

MEP:

* Mechanical
- (4) three-ton air handling units
- Water-source heat pump
- Energy recovery wheel on the roof used to mix outside air with return air
- Plethora of fans used to exhaust class $3 \& 4$ air
* Electrical
- 600 KW Emergency generator on roof
- 2500A Main Circuit Breaker

JESSE BORDEAU ~ Structural Option

Areas of Discussion

Building Abstract 1
Areas of Discussion 2
List of Figures. 3
Executive Summary 4
Acknowledgements 5
Existing Conditions (6-8)
Site Location 6
Building Description 7
Design Codes and Standards 8
Existing Structure Overview (9-14)
Columns/Foundation 9
Lateral 10
Typical Floor Bay 11
Load Paths 13
Other Elements 14
Depth Study (15-31)
Problem Statement. 15
The Solution 15
Simplified Column Layout 16
Floor System 17
Column Design 23
Lateral Design 26
Breadth Studies (32-41)
Breadth \#1: Construction Management Cost Analysis Introduction 32
Process 32
Summary 34
Breadth \#2: Alternative Lighting Analysis
Introduction 35
Process 35
Summary 40
Conclusion 41
Appendix A (Existing Structure) 42
Appendix B (Proposed Structure) 55
Appendix C (CM Breadth) 97
Appendix D (Lighting Breadth) 112

List of Figures

Figure 1: 6
Figure 2: 7
Figure 3: 9
Figure 4: 9
Figure 6: 10
Figure 7: 11
Figure 9: 12
Figure 8: 12
Figure 10: 13
Figure 11: 14
Figure 12: 14
Figure 13: 14
Figure 14: 16
Figure 15: 16
Figure 16: 19
Figure 17: 19
Figure 18: 20
Figure 19: 20
Figure 20: 21
Figure 22: 22
Figure 21: 22
Figure 23: 24
Figure 24: 26
Figure 25: 26
Figure 26: 28
Figure 27: 28
Figure 28: 29
Figure 29: 29
Figure 30: 30
Figure 31: 34
Figure 32: 36
Figure 33: 36
Figure 34: 37
Figure 35: 38
Figure 36: 38
Figure 37: 39

Executive Summary

AC Hotel Philadelphia is a 15-story residential transient hotel (including penthouse) located in the heart of downtown Philadelphia. This new hotel, owned by Baywood Hotels, will be built on top of the previous NFL Films and Warner Bros distribution center, a historic twostory building located at the corner of Florist and North $13^{\text {th }}$ Street in Philadelphia.

The original two-story, $31^{\prime}-0^{\prime \prime}$ tall building is a load bearing masonry structure. In order to properly satisfy the proposed addition, a mat foundation of varying thickness will be installed and the building will be gutted and restructured. The new construction will consist of composite steel at the bottom two levels, supporting a 12-story steel-frame structure atop, capped with a penthouse. The typical floor to floor height measures $10^{\prime} 6^{\prime \prime}$. Concentric braced frames support the building against lateral loads.

The building was redesigned with a one-way concrete slab with concrete beams with varying spacing from $4^{\prime} 6^{\prime \prime}$ to $5^{\prime \prime} 8^{\prime \prime}$ based on bay size. Concrete girders transfer loads from the slab and beams to concrete columns which disperse building loads into the mat slab foundation. The existing lateral system was also switched from concentric braced frames to concrete shear walls and moment frames. Four shear walls resist lateral building movement in the N-S direction and moment frames run in the E-W direction. The column layout was slightly modified to create a more evenly-spaced grid. Even with the change in structure, the overall building mass decreased, and wind still controlled for lateral load conditions. Both structural systems were designed by hand. The gravity system was verified by the use of StructurePoint programs and the lateral design by ETABS (2015). Assumptions for calculations can be located the beginning of each section.

Acknowledgments

I would like to express my sincere gratitude to the following people for assisting me throughout the year on my thesis project:
> The engineers at Holbert Apple Associates (especially Scott Molongoski \& David Smith) for allowing me access and use of the AC Hotel Philadelphia building project.
> The AE faculty, especially my thesis advisors (Dr. Hanagan \& Prof. Sustersic) for their advice and assistance.
> My fellow AE friends, classmates and colleagues.
My parents for continuously supporting me through my higher-education endeavors.

Existing Conditions

Site Location

230 North $13^{\text {th }}$ St. is located in Philadelphia, Pennsylvania in proximity to the Liberty Bell, The Franklin Institute and the Eastern State Penitentiary. The site is positioned ever so slightly off axis and lies northwest of center city, offering dwellers a beautiful view of the Philadelphia skyline. Figure 1 clarifies the exact location below.

Figure 1: Site location of 230 North 13th Street in Philadelphia, Pa. (Courtesy of Google Maps)

Building Description

230 North $13^{\text {th }}$ Street is a residential transient hotel located in downtown Philadelphia, Pa. This modernized hotel will provide 150 luxurious guest rooms, a private dining area solely for guests, and underground valet parking accessible only by car elevator. There is also a rooftop penthouse which includes an intensive green roof. There are also several extensive green roofs on the low roof areas at the second and third levels. The original two-story structure will be partially demolished and remodified in order to support the 192' superstructure. It is important to note that the existing structure will not support the new building, new steel and concrete columns will be installed to compensate for the added building mass. The design team and the Philadelphia Historical Commission came to an agreement that in order to historically preserve the existing facades, the building must step back 18 ft on the southern and eastern sides.

AC Philadelphia occupies 107,680 SF, with the typical floor occupying near 6,000 SF. The lower three levels have a slightly larger footprint than the typical level (levels 3-13). The main means of vertical circulation are through two stairwells located at the northern corners of the building and two elevators (side-by-side)

Figure 2: Rendering revealing new hotel atop the existing two-story building. (Courtesy Google Maps) at the center of the floor plan, helping to keep the center of rigidity and center of mass towards the middle of the structure, reducing overall building eccentricity. The bottom floor (at grade level) features a lobby, café, lounge and a kitchen. The second floor is occupied by a small indoor pool, meeting rooms, and several guest rooms. Above
this, the typical floor contains only guest rooms, and the penthouse at level 14 includes a fitness room, a green roof terrace and some of the mechanical equipment. The majority of the mechanical equipment is contained on the mechanical penthouse (level 15).

Design Codes \& Standards

Relevant codes and standards used while designing AC Hotel Philadelphia are listed below:
> International Code Council

- International Building Code 2009
- Chapter 11 (IBC 2012) Accessibility Requirements
> American Society of Civil Engineers
- ASCE 7-05
> AC Hotels By Marriott Design Standards 2014 edition
> AC Hotels By Marriott Module 14 FLS Design Standards January 2015 edition
> City of Philadelphia Building Code with Current Amendments
$>$ AISC Steel Manual (14 ${ }^{\text {th }}$ Edition)
$>$ ACl 318-11 Concrete Code

Existing Structure Overview

Figure 3: Existing structural Skeleton of AC Hotel Philadelphia.

Columns/Foundation

The existing building is comprised of two main floor systems (figure 3) and is supported primarily by steel (wide-flange) columns. At the base of the structure, the columns are supported by the mat slab foundation. Partial demolition will take place to allow for the construction of AC Hotel Philadelphia. Remaining foundation walls can be seen in

Figure 4: Existing exterior walls to remain after demolition. (Courtesy Google Maps)

Figure 4. Underpinning will be needed for the one-story garage to the North and for a portion of the three-story building to the North. The AC Hotel Philadelphia building will be supported on a varying 30 "-42" mat foundation, and

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}, 2016$

micropiles will support existing structures on the northern side. Extra steel columns will complement the concrete columns at the basement level to support the entire building load. At the basement level, a mix of concrete (30 "x30", typ.) and steel columns (W10x54, W12x136 and W14x211 typ.) are used. Beginning at the first floor, steel columns (W10x54 and W14x211, typ.) are used. At the top level, W10x33 and W14×120 columns are used. As elevation increases, column weight per foot decreases; however, steel column depths remain the same full height to minimize splice connection detailing.

Lateral System

Laterally, multiple 14 " concrete shear walls are utilized up to grade, with braced frames (HSS8x8 and HSS6x6) on all floors above grade (Figures 5 and 6). Braced frame beam sizes are W14x26 typ. Braced frames are utilized around the stair towers located on the northern façade and at the centralized elevator shaft.

Figure 5: Typ. floor plan showing Lateral Force Resisting Elements (LFRE).

Figure 5: Elevation of LFRE's. The configuration is comprised of chevron-shaped braces.

Typical Floor Bay

Despite a rectangular structural grid, the bay sizes of AC Philadelphia are quite irregular. Bay sizes range anywhere from $14^{\prime}-25^{\prime}$ in width by $17^{\prime}-30^{\prime}$ in length. Highlighted in Figure 7 is the average bay size chosen for the AC Philadelphia building. Due to the bay irregularity, the loads on each girder vary, hence why girder (d-beam) sizes range from DB8x37 to DB 9x65. One can see the architects' intent to open up the floor plan in the building by creating larger interior bays than exterior bays.

Figure 6: Typical Framing plan showing irregular structural grid. The average bay size ($24^{\prime} \times 17.5^{\prime}$) is highlighted above.

Shown below are section cuts through the two main floor structures: girder-slab assembly (Figure 8) and a composite floor system (Figure 9). The girder-slab configuration is comprised of $8^{\prime \prime}$ thick, precast hollow core planks that sit directly on the bottom flange of a structural steel beam, and protrude past the top flange, concealing the top of the beam. The bottom of the beam is exposed; however this issue can be solved by adding a drop-panel ceiling. Proper construction for inspection requires $2^{\prime} 0^{\prime \prime}$ width openings (minimum) at $24^{\prime \prime}$ O.C. in order to place \#4 transverse rebar. Once all rebar is placed, the openings are backfilled with grout. The grouted transverse rebar helps transfer load between the concrete and steel, therefore, this floor system is assumed to be composite. Since concrete planks are being utilized, infill beams are not needed for the system, and as noted in the previous section, the typical dissymmetrical (Dbeam) used for the project ranges from DB8x37 to DB 9x65. Since the floor is a girder-slab, shear studs are not needed. However, in other areas of the building, $3 / 4$ " diameter, $5^{\prime \prime}$ long shear studs are used for composite sections. The D-beams are commonly cambered $11 / 4^{\prime \prime}$ to ensure allowable beam deflections. The three lower floors are comprised of: $31 /{ }^{1 \prime \prime}$ lightweight concrete over a $3^{\prime \prime}$ deep (18 gage) composite metal deck ($61 / 4$ " total floor depth) with 6 " $\times 6$ " welded wire fabric mesh.

Figure 8: The typical floor plan is 8" hollow-core concrete planks (4'0" wide typ.) that sit on dissymmetrical beams. This system makes up what is known as a Girder-Slab.

Figure 7: The three lower floors of AC Philadelphia are 3 $1 / 4$ "LWC over 3", 18 gage composite metal decking.

Load Paths

Gravity

Starting from the rooftop penthouse, loads are applied from the penthouse green roof and transmit through the floor decking onto the girder slab floor system, and then into the columns (Figure 10). The building façade is primarily an ALPHATON Terracotta Panel Rainscreen system. The façade load is transferred into the aluminum substructure, through the panel clips and into the girder slab floor system. Loads are applied on girders and brought down through the columns (W10x33\& W14×120) and dispersed onto the mat foundation which will evenly spread the full load into the soil beneath. Loads from the lower floors will follow the same path except that loads will transfer from the composite floor into the girders and down through the columns.

Lateral

Lateral loads are absorbed by the diaphragm and transferred into the column lines where the concentric braced frames will resist the force. This bracing transfers the load down through the cross members and is collected at the base where the foundation walls distribute the load into the surrounding soils.

Figure 9: Gravity Load Path

Other Elements

Project designers of AC Philadelphia incorporated multiple green roofs (both intensive and extensive) in their design (Figure 11-13). On the second and third levels, smaller, extensive green roofs are utilized. On the upper penthouse level, a larger, intensive green roof was installed. Since intensive green roofs are designed to support dynamic activity, higher design loads must be accounted for.

Figure 10: 2nd Floor Green Roof

Figure 11: 3rd Floor Green Roof

Figure 12: Penthouse Green Roof

Depth Study

Problem Statement

The current gravity and lateral framing systems of $221 \mathrm{~N} .13^{\text {th }}$ Street have been determined to be satisfactory for strength and serviceability requirements based on the findings in Notebook Submission A, B \& C. Although the design is sufficient, the owner and architect have decided to alter the structure, utilizing structural concrete instead of structural steel. A one-way slab system with beams will be implemented as the new floor system and will be supported by concrete columns. The main reason for this is to simplify floor plan layout and determine if it is feasible to implement a cast-in-place slab instead of a precast system in order to maintain the AC Marriott requirement of a floor-to-ceiling height of $9^{\prime} 0^{\prime \prime}$. The existing building design also incorporates a 100\% LED lighting scheme. With the efficiency and effectiveness of LED's on the rise, it was of interest to see if it is cost-efficient to have an LED system. A combination of fluorescent and compact fluorescent (CFL) luminaires will be implemented in place of the LED's and the initial luminaire cost, along with annual power costs, will be compared to see which scheme is more appropriate.

The Solution

The new design will incorporate a new gravity system, which acts as a one-way concrete slab with beams, and a lateral system comprised of shear walls resisting forces in the N-S direction and concrete moment frames resisting forces in the E-W direction.

Simplified Column Layout

In order to perform a structural redesign, it was determined that the most cost-efficient scheme would evolve from simplifying the existing column geometry. As seen in figures 14 and 15, several grid lines were removed to simplify load paths, and span lengths were established in order to create a more balanced grid system. It was decided to maintain the same floor openings to keep the designs comparable. Although the overall floor dimensions were modified, the changes were not deemed critical enough to have a big impact on the structural design.

91'

Figure 13: Typical floor plan of the existing girder-slab design.

Figure 14: Typ. Floor plan of the proposed one way slab with beams. Multiple grid lines were altered/removed as necessary to create a systematic grid.

Floor System

Assumptions

$>$ Beam sizes

- Beams-> $\frac{d}{b}<1.5$
- Girders-> $\left.\frac{d}{b}<2.0\right\}$

Where " d " is the distance from the top of the beam to the middle of the reinforcement and " b " is the width of the concrete section.
$>$ Rebar

- The use of rebar larger than \#10 is not recommended due to issues with constructability of mechanically splicing and bending thick bars
- Min clear spacing for parallel bars=diameter of the bar (db), but >1"
> Live Loads
- Roof-unreducible (30psf)
- $\quad 1^{\text {st }} \& 2^{\text {nd }}$-reducible (100psf) public rooms \& corridors serving them
- Typ. Floor- reducible (40psf+10psf) private rooms \& corridors serving them
- LL Reduction (KLL)
- Int Col-4
- Ext Col w/ cant slab-3
- Corner Col w/ cant slab-2

Slab

Design alternatives were investigated in the Fall semester to use as a redesign concept for the Spring semester. Through the systems that were researched, it was determined that none of the three were the ideal fit for application. Through further research it was decided that a one way slab would be best to implement. Minimum slab thickness was established in accordance with Table 9.5(a) in ACI 318-11 as seen in the equation 1 below. Slab thickness was calculated based on the assumption that both ends are continuous. It was also determined that multiple beams beneath the slab would be required for slab deflection control because they act as intermediate supports. The use of beams also helps to decrease overall slab thickness from 8" to $5^{\prime \prime}$, which in turn, will maintain the required floor-to-ceiling height. The alternative option would be to remove the beams, increasing the required slab thickness to $11^{\prime \prime}$ which would decrease the ceiling-to-floor height beneath the allowable specifications for AC standards. Therefore, the design would require increasing overall building height, which would drive the cost of the proposed system significantly up and the design would be less feasible. This was the driving reason to utilize beams. As seen in equation 1, the minimum required thickness is less than $3^{\prime \prime}$. However, this value was increased to $5^{\prime \prime}$ for the typical floor and $6^{\prime \prime}$ for the lower three floors to allow for adequate reinforcement cover and placement. Additional calculations (found in Appendix B) were executed for the worst case scenario (simply supported) and the slab thicknesses selected remained adequate. Maximum deflections were not necessary to compute because of the conservative slab depth selected.

Equation 1: Minimum slab thickness for a typical floor. The allowable thickness is so thin due to the use of interior beams act as supports for the slab. This value was increased to account for MEP equipment.
\min thickness $(h)=\frac{l}{28}=\frac{5.67 * 12}{28}=2.43^{\prime \prime}$

TABLE 9.5(a) - MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED				
	Minimum thickness, h			
	Simply supported	One end continuous	Both ends continuous	Cantilever
Member	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections			
Solid oneway slabs	U/20	U24	U28	e/10
Beams or ribbed oneway slabs	e/16	U18.5	(21	48

Figure 15: Minimum allowable thickness for nonprestressed beams and slabs without needing to calculate deflections. (Courtesy ACI 318-11)

Reinforcement

Reinforcement for the one-way slab will run in the N-S direction, allowing the slab weight to distribute evenly to the beams beneath. Slab reinforcement was calculated using equations (10-3) and (10-4) from ACl for minimum bar area required and maximum bar spacing respectively. It was found that \#4@12" O.C. is adequate for reinforcement. In figure 17 below, the floor load path for a typical floor is displayed. Once the slab distributes itself to the beams, the load is transferred to girders ($\mathrm{N}-\mathrm{S}$) where the load is deposited down into the columns.

Figure 16: Load path for a typical floor. The one way slab system evenly distributes load to the beams (running E-W). Beams transfer the load into the girders (running $N-S$) which carry the load into the columns that frame the particular bay.

Beams and girders were also designed in accordance with Table 9.5(a) assuming both ends are continuous. Design moments from ACl (section 8.3.3) can be found in figure 18 below. The longest span (24') was selected, granting the rest of the spans a conservative design approach.

```
Positive moment
End spans
    Discontinuous end unrestrained ............ ww
    Discontinuous end integral with support.... .........}\mp@subsup{w}{u}{}\mp@subsup{|}{n}{2}/114 (1
    Interior spans ..............................................}\mp@subsup{w}{u}{\prime}\mp@subsup{\ell}{n}{2}/16 (2
Negative moments at exterior face of first interior
support
    Two spans..................................................}\mp@subsup{w}{u}{}\mp@subsup{\ell}{R}{2}/
```



```
Negative moment at other faces of interior 
Negative moment at interior face of exterior support for
members built integrally with supports
    Where support is spandrel beam ............ w}\mp@subsup{w}{u}{}\mp@subsup{\ell}{n}{2/24
    Where support is a column ............................ wu}\mp@subsup{|}{n}{\prime}\mp@subsup{\ell}{n}{2}/16 (5)
```

Figure 17: Approximate moments for various locations along the beam span. (Courtesy ACI 318-11, section 8.3.3.)

Figure 18: Location of approximate moments along a full beam span for a typical floor.

Beam sizes were approximated based on the following equation:

$$
\begin{aligned}
& \text { Equation 2: Derivation of the flexural capacity equation for } \\
& \text { concrete. If the equation below holds true, a simplified } \\
& \text { equation for the required area of steel can be used. } \\
& \qquad 20 M u<b d^{2}
\end{aligned}
$$

As stated in the assumptions at the beginning of the section, beams and girders were designed to certain proportions to reduce issues with shear and deflection. Beams were designed that $\mathrm{d}<1.5 \mathrm{~b}$ and girders, $\mathrm{d}<2.0 \mathrm{~b}$. Using equation 2 above enables the designer to calculate the required area of steel using equation 3 below:

Equation 3: Area of reinforcement required to satisfy strain requirements.

Figure 19: Concrete beam section dimensions labeled.

$$
A s_{r e q d}=\frac{M u}{4 d}
$$

Equation 4: Standard procedure to determine the area of reinforcement required for a flexural member.

$$
A s_{r e q d}=\frac{M u}{0.9 f y j d} \rightarrow a=\frac{A s f y}{0.85 f^{\prime} c b} \rightarrow c=\frac{a}{\beta} \rightarrow \varepsilon_{s}=0.005<\varepsilon_{c}\left(\frac{d-c}{c}\right) \rightarrow \text { if } \varepsilon_{c}>\varepsilon_{s} \therefore \phi=0.9
$$

After sufficient rebar sizes were selected, beams were also checked for shear capacity. It was established that all beams and girders need shear rebar (stirrups). Figures 21 and 22 below show an example of a detailed section of a designed beam and the rebar layout for a typical floor.

Figure 21: Detailed beam section for a typical floor (17' span).

Figure 20: Reinforcement layout for a typical floor.

Certain areas within the building require particular attention to detailing because of special loading conditions. In particular, the green roofs and pool area were designed differently. A full set of section details and floor plans can be found in Appendix B.

Column Design

Assumptions

> Concrete strength-4ksi
$>$ Exterior columns-add wall weight when considering loads
$>$ Rebar for compression members: $0.01 \mathrm{Ag}<$ Ast $<0.08 \mathrm{Ag}$
$>$ LL Reduction

- Typ. Floor - reducible
- Roof - not reducible
$>$ Columns under consideration ($K_{L L}=4$ for both columns)
- Exterior: C1 ($\mathrm{Mu}=29 \mathrm{kft}$)
- Interior: C4 (Mu~0kft)

Process

Sizes were determined for a typical interior and exterior column with the use of the CRSI Design Handbook (2008 edition). Before columns could be selected from the manual, design loads were established as the following:

Table 1: Design loads used for various areas within the building.

Design Loads						
Load Type	Unit	Lower Floors (1-3)	Upper Floors (4-14)	Roof	Green Roof	Pool Area
Dead	psf	85	72.5	140	140	400
Live	psf	100	50	30	100	100
Wall	plf	289	289	289	289	289
Controlling Load Case: 1.2DL+1.6LL+0.5Lr						

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}, 2016$

Dead loads above include an additional 10psf for superimposed loads. Live load for the upper floors include 10psf for partitions. Once design loads were determined, column loads were calculated. Square columns were selected from Table 3-12 in the CRSI handbook for architectural reasons with column sizes ranging from $18^{\prime \prime} \times 18^{\prime \prime}$ to $24^{\prime \prime} \times 24^{\prime \prime}$. Selected columns and their capacities are displayed in table 2 . Column sizes are displayed in table 3 which summarizes loads and sizes for a typical interior and exterior column. Extra capacity was reserved for the columns so they can withstand lateral effects from wind forces.

Figure 22: Various column sizes specifying their respective areas of steel.

Table 2: Column capacities from the CRSI Manual.

CRSI Column Capacities			
Column	Rebar	$\varphi \mathrm{Pn}[\mathrm{k}]$	$\varphi \mathrm{Mn}$ [kft$]$
$18^{\prime \prime} 18$ "	(4) \#9	691	104
20"x20"	(4) \#9	825	140
$22^{\prime \prime} \times 22^{\prime \prime}$	(4) \#10	1005	188
24"x24"	(4) \#11	1202	246

It should be noted that larger reinforcement sizes require additional on－site labor to mechanically bend and weld the steel．To avoid these issues，selected rebar sizes are \＃11 or smaller． Slenderness effects were also taken into account as per ACI section 10.10 （Eqn．10－6）and it was found that slenderness effects were permitted to be neglected．

Table 3：Column size and reinforcement summary．Calculated design moments and axial loads are displayed as well．

Column								
	C1（Ext Col）				C4（Int Col）			
	Pu	Mu	Column Selection	Rebar	Pu	Mu	Column Selection	Rebar
15 （Penthouse）	55	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	100	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
14	90	29.0	$18^{\prime \prime}$ ェ18＂	（4）\＃9	166	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
13	125	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	233	N／A	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9
12	161	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	299	N／A	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9
11	196	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	365	N／A	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9
10	231	29.0	$18^{\prime \prime} \mathrm{x} 18^{\prime \prime}$	（4）\＃9	431	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
9	266	29.0	$18^{\prime \prime} \mathrm{x} 18^{\prime \prime}$	（4）\＃9	498	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
8	301	29.0	$18^{\prime \prime}$ x18＂	（4）\＃9	564	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
7	336	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	630	N／A	$18^{\prime \prime}$ ェ18＂	（4）\＃9
6	372	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	696	N／A	$20^{\prime \prime} \times 20^{\prime \prime}$	（4）\＃9
5	407	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	762	N／A	$20^{\prime \prime} \times 20^{\prime \prime}$	（4）\＃9
4	442	29.0	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	829	N／A	$22^{\prime \prime} \times 22^{\prime \prime}$	（4）\＃10
3	502	50.9	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	926	N／A	$22^{\prime \prime} \times 22^{\prime \prime}$	（4）\＃10
2	555	50.9	$18^{\prime \prime}$ ェ18＂	（4）\＃9	1024	N／A	$24^{\prime \prime} \times 24^{\prime \prime}$	（4）\＃11
1	608	50.9	$18^{\prime \prime} \times 18^{\prime \prime}$	（4）\＃9	1121	N／A	$24^{\prime \prime} \times 24$＂	（4）\＃11

Lateral Design

Figure 24: 3D model of AC Hotel Philadelphia created in ETABS.

Certain elements of the building that do not have an impact on the proposed investigation were not modeled.

Figure 23: 3D representation of AC Hotel Philadelphia. (Courtesy Holbert Apple Associates)

Process

Due to the adjustment in floor systems, it was determined to modify the LFRE's of the building to better compliment the gravity system. In the existing design, multiple concentric braced frames (HSS 6x6x1/2 typ.) were used in both directions. Concrete moment frames will now resist lateral loads in the E-W direction and concrete shear walls (both full building height) will resist forces in the N-S direction as seen in FIG. Shear walls are much more rigid than moment frames, making them a more suitable fit for the N-S direction since greater wind loads are

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}, 2016$

experienced. In order to gain a better understanding of the new system being implemented, ETABS (2015 edition) was utilized. Wind and seismic loads were recalculated to account for the change in structure material and stiffness. In order to acquire accurate computer-generated results, careful measures were taken while using ETABS. The elements modeled were:
> Slabs
$>$ Slab openings

Columns

Column piers
> Shear walls

Beams that compose the moment frames

All other elements were not modeled because they do not resist any lateral forces and therefore do not impact the sizing and design. Moment connections were specified for the frames and the walls were set to mesh every four feet so that the elements in a particular direction were properly analyzed when lateral loads are applied. It was also extremely important to specify that the diaphragm is semi-rigid (flexible) to allow proper joint-fixity movement. The last step was to apply wind loads (user defined) in both directions. Full wind load calculations can be found in Appendix B. It was determined through ASCE 7-05, Equivalent Lateral Force Procedure (section 12.8) that wind still controlled the design in both orthogonal directions. This makes sense due to the geographical site location and realizing that wind would most likely control on the east coast. Through the investigation, it was found that the overall wind forces declined and base shears decreased nearly 33% even with the switch to concrete. Beam sizes originally sized for gravity
loads were adequate for lateral forces as well, therefore, they do not need to be upsized. ETABS was also utilized for its detailing capabilities. The shear walls defined in the program were detailed and it was determined that boundary elements would be needed for extra capacity against lateral forces.

Pictured below in figures 26 and 27 are the LRFE's on a typical floor and lower floor for both directions.

Figure 25: LFRE's displayed for both orthogonal directions for a typical floor.
(4) Shear walls, (2) 17'-long and (2) 10'-long resist forces in the N-S
direction. (4) Concrete moment frames resist forces in the $E-W$ direction.

Figure 26: LFRE's displayed for both orthogonal directions for a lower floor. Two additional concrete moment frames were placed to control inter-story drifts at the lower levels.

Figures 28 and 29 below shows typical detailing for a shear wall and full results can be found in

Appendix B.

CW2 Section: L

(Scale $1 / 4$ = $1^{1}-0$ ")

Figure 27: Typical detail for 10^{\prime} long shear walls (SW-1 and SW-4). Boundary elements were needed for extra resistance against the overturning moment of the building. (Courtesy of ETABS 2015)

CW1 Section: N

(Scale $1 / 4=1^{\prime}-0^{\prime \prime}$)

Figure 28: Typical detail for 17' long shear walls (SW-2 and SW-3).
Boundary elements were also required for OTM. (Courtesy of ETABS 2015)

Results

Results in figure 30 and table 3 below reveal that each orthogonal direction achieved allowable drift values for all elevations. After a preliminary analysis was run, it was determined that the lower floors required additional moment frames to keep inter-story drifts within allowable limits. Hand calculations and other results located in Appendix B verify that the LFRE's are adequate for lateral forces applied.

Figure 29: Building drifts displayed for both orthogonal directions. Drift values were measured at each story height.

Table 2: Wind drift values displayed for all story elevations. These values were compared with the allowable drift of (h/400), where h is the elevation of the story being analyzed.

Wind Deflection Criteria					
Leve1	Elevation [ft]	N-S Direction (Shear Walls)	E-W Direction (Moment Frames)	Allowable Drift $(\mathrm{h} / 400)$ [in]	Acceptable Drift?
Roof	181	2.31	4.14	5.43	yes
Penthouse	163	2.14	4.06	4.89	yes
14	149.25	1.85	3.87	4.48	yes
13	138.75	1.6	3.65	4.16	yes
12	128.25	1.42	3.47	3.85	yes
11	117.75	1.25	3.27	3.53	yes
10	107.25	1.08	3.03	3.22	yes
9	96.75	0.91	2.77	2.90	yes
8	86.25	0.75	2.48	2.59	yes
7	75.75	0.59	2.15	2.27	yes
6	65.25	0.45	1.81	1.96	yes
5	54.75	0.32	1.46	1.64	yes
4	44.25	0.21	1.14	1.33	yes
3	33.75	0.12	0.88	1.01	yes
2	15.66	0.06	0.46	0.47	yes
1	0	0	0	0.00	N/A

Since the LFRE's passed for both gravity and lateral requirements, the proposed lateral system is considered adequate for analysis purposes.

Breadth Studies

Breadth \#1: Construction Management Cost Analysis

Introduction

The construction management breadth entails a comparison of a detailed cost estimate between the original structure (girder slab system) and the proposed design (one-way slab). The cost analysis encompasses all necessary materials to form/erect the structure. Material, labor and equipment values were extracted from RS Means: Facilities Construction Cost Data (2014 edition). The total estimate does not include overhead and profit due to the fact that values can vary depending on the contractor. Time and location factors were also considered. Philadelphia is a densely populated area, which is why the location factor (1.139) is higher than the national average (1.0). Although the project has not gotten underway, the time factor was determined based off the midpoint (08/2016) of the initial project timeline (10/2015-06/2017) and assumed 3% annual inflation lending to a factor of 1.08.

Process

Starting with the existing steel design, values for the slab (hollow-core planks), structural steel (W-shapes) and shear studs were accounted for. Bare cost values also encompass structural bolts, delivery, installation and erection. The majority of takeoffs were in linear feet [LF] with the exception of the precast planks, measured by the required square footage [SF]. To account for all steel members, assumptions were made for beams sizes due to only certain
members receiving values in the manual. There were also associated crane costs because erecting the steel structure will require the use of two cranes due to site logistics. Each crane was assumed to be needed for six months, with a cost of $\$ 143 \mathrm{k}$ per month. A sample line was extracted from the estimate and can be seen below in table 5. A full detailed estimate (separated by category) is available in Appendix C for all assumptions and details.

Table 3: Sample line taken from the existing structure estimate. A full estimate can be found in Appendix C.

Category	Line Number	Description	Crew	Daily Output	Labor Hours	Unit	Material
Slab	034113.50 .0100	Precast Structural Concrete, Slab, Hollow-Core Planks, 8" Thick	C-11	3200	0.023	SF	7.10

For the proposed design, formwork, rebar, concrete and concrete placement were all accounted for. Bracing and shoring costs are pre-included in unit prices. Formwork is measured by total contact area between the formwork and concrete [SFCA], reinforcement by the total rebar [LB] and concrete by the cubic yard [CY]. In an effort to reduce total cost it was assumed that the forms will be used four times before they are considered waste. Careful measures will be taken by construction workers when handling the forms in the field so that the forms will be in workable condition for multiple uses. Concrete will be placed by pump to avoid needing a hoist/crane until the upper floors.

Estimate totals yielded within 1\% of each other (approx. \$3.2 million), giving reason to believe that the proposed design is feasible and can be verified below in table 4. However, the lack of qualified concrete subcontractors in the region with the capabilities of such a large project

Table 4: Total estimated costs of the existing and proposed structure are compared.

System	Structure Cost	Difference
Steel	$\$ 3,164,409$	0.9%
Concrete	$\$ 3,193,185$	

most likely explains why the steel structure was selected. Figure 31 below shows a component breakdown by percentage of the total cost.

Figure 30: Cost breakdown by structural component comparing the existing and proposed structural systems.

Summary

In summary, the proposed one-way slab with beams structure only costs 1% more than the existing structure and is a viable design due to its simplicity and redundancy. However, it would decrease the floor-to-floor height which would be a major concern and it may be difficult to locate a concrete subcontractor that could supply the entire building. One large schedule impact would be the curing time needed for all of the concrete forms, compared to the ease of construction with the precast girder-slab system. Overall, the proposed design is feasible so long as a reliable concrete source could supply the project at a reasonable cost; however, it resulted in a longer construction schedule overall.

Breadth \#2: Alternative Lighting Analysis

Introduction

AC Philadelphia utilizes an LED lighting scheme throughout the entire building. Since LEDs are already implemented, there was a study performed to see if there were more appropriate solutions for the reception/lobby space. This involved replacing LED fixtures with a combination of linear and compact fluorescent (CFL) luminaires. It is known that on average, LEDs consume less power than fluorescents, however fluorescents tend to be cheaper to purchase up front. All of the LED luminaires will be directly switched out with fluorescent fixtures that have similar distributions and lumen outputs; the lighting layout however may be slightly altered to better suit illuminance requirements for the spaces. With these thoughts in mind, this lighting breadth will investigate the two systems, and determine which is more cost efficient initially, as well as over a 20-year period.

Process

In order to correctly model the space, AGi32-16.7 was utilized for light calculations and renderings. It was determined that the most appropriate way to compare the two designs was to model the original design first, so that illuminance values (vertical and horizontal) of the original system could be compared with those found in Table 28.2 of the IES Lighting Handbook (10 ${ }^{\text {th }}$ edition) for Hospitality and Entertainment Facilities: Lobbies and Lounge (table 5). A reference model of the part of the lobby in interest was created in AutoCAD and exported into AGi32. Part of the lobby was not included after it was determined to be out of the scope of this
breadth. Once in AGi32, the model was modified to replicate the space as closely as possible, including finishes and relevant furniture. IES files for the existing luminaires were located and used to create the most accurate model. In figure 32 below, a rendering shows a view of how the existing space would appear, and a Pseudo-color shows the light levels in the space. It was also essential to achieve uniformity within the space so the contrast of light does not distract occupants while still attaining target illuminance values which depends on the task being performed. To compare uniformities, calculation grids were placed in the models. The "Lobby" grid measures illuminance values for the entire space shown below. The "Uniformity" grid (highlighted in pseudo-rendering) was strategically placed at the center of the room so that corners of the room (outliers) did not skew results. All relevant values are in figure 33 below.

Figure 31: A pseudo-color rendering displaying the lighting layout for the lobby and reception area. Results reveal higher light levels near prominent surfaces and work planes (reception desk and seating area). (Courtesy AGi32-16.7)

```
Project 1
```

Project 1
Calc Pts
Calc Pts
Lobby_Workplane
Lobby_Workplane
Illuminance (Fc)
Illuminance (Fc)
Average=31.57 Maximum=54.3 Minimum=8.5
Average=31.57 Maximum=54.3 Minimum=8.5
Avg/Min=3.71 Max/Min=6.39
Avg/Min=3.71 Max/Min=6.39
Object_1_Top
Object_1_Top
Illuminance (Fc)
Illuminance (Fc)
Average=85.01 Maximum=108 Minimum=66.4
Average=85.01 Maximum=108 Minimum=66.4
Avg/Min=1.28 Max/Min=1.63
Avg/Min=1.28 Max/Min=1.63
Uniformity
Uniformity
Illuminance (Fc)
Illuminance (Fc)
Average=37.35 Maximum=46.5 Minimum=29.5
Average=37.35 Maximum=46.5 Minimum=29.5
Avg/Min=1.27 Max/Min=1.58

```
Avg/Min=1.27 Max/Min=1.58
```

Figure 32: Displays illuminance results from AGi32 for three work planes defined within the program. (Courtesy AGi32-16.7)

Table 5: Recommended illuminance targets for various tasks are displayed. Values extracted from the IES handbook are given in lux. These values were converted to foot-candles so light levels in AGi32 could be compared directly.

Application/Task	Recommendation Eh $[\mathrm{Fc}]$	Recommendation Ev [Fc]	Uniformity Targets (Avg to Min)
Gen Lighting	5	2	4 to 1
Reading/Work Areas	15	5	N/A
Lobby Desk Top	15	5	4 to 1
Corridors/Elevators	5	3	$\mathrm{~N} / \mathrm{A}$
Social/Waiting Areas	4	1.5	$\mathrm{~N} / \mathrm{A}$

As one can see, the values attained by the original design exceed the recommended values by over 500%, which gives reason to believe it was an intentional attempt by the architect to create a bright, welcoming area. The same approach was repeated for the proposed system; the only difference being new fluorescent luminaires were found and substituted for the original LED fixtures. These luminaires were selected based on criteria that was determined after examining the space, attempting to incorporate: low wattage and similar lumen output in order to keep the comparison consistent. Before creating the layout, IES files were examined to determine the distribution of light from each luminaire. The LED lights tend to have a higher percentage of direct downlight, giving reason to why an abundance of luminaires were needed to light the space, and why light levels on surfaces surpass their targets by so much. Fluorescents on the other hand, have a wider light distribution, allowing for better overall uniformity. Because of this, it was possible to remove luminaires from the scheme, bringing the initial cost down, while the design still exceeded illuminance targets, however they were closer compared to what the LEDs provided. The results of the proposed scheme are found below.

Figure 33: Proposed lighting scheme is revealed. Multiple fixtures were removed and illuminance targets were still attained, therefore the initial cost decreased. Better uniformity was achieved from altering the layout and the fact that the CFL selected has a wider light distribution. (Courtesy AGi32-16.7)

```
Statistics
Project 1
Calc Pts
Lobby_Workplane
Illuminance (Fc)
Average=20.37 Maximum=37.4 Minimum=6.3
Avg/Min=3.23 Max/Min=5.94
Reception Desk_1_Top
Illuminance (Fc)
Average=49.52 Maximum=55.8 Minimum=40.8
Avg/Min=1.21 Max/Min=1.37
Uniformity
Illuminance (Fc)
Average=22.23 Maximum=31.4 Minimum=15.7
Avg/Min=1.42 Max/Min=2.00
```

Figure 34: Displays illuminance results from AGi32 for three work planes defined within the program. Light levels are closer to the target values, while still achieving overall uniformity. (Courtesy AGi32-16.7)

Figure 35: Rendering of the lobby and reception areas is displayed. A combination of fluorescent and CFL downlights, wall washers and pendants combine to produce an acceptable lighting scheme for the LED to fluorescent redesign. (Courtesy AGi32-16.7)

Once the models were replicated, a 20-year cost analysis was performed. As seen in figure 37 and table 6 below, the fluorescent lighting scheme is initially about half the cost compared to LEDs. However, after approximately 13yrs, the LED scheme lends itself as the less expensive option because the system only requires $3 / 4$ of the necessary power needed for the fluorescent option.

Figure 36: Existing and proposed lighting schemes are compared over a 20-year span to determine which design is feasible in the long run. The break-even point is also marked to show the point that the LED scheme would become cheaper due to lower annual power consumption.

Table 6: Lighting schemes are compared based on their initial cost for fixtures and their annual cost in energy.

System Comparison			
Cost	LED	Fluorescent	Fluorescent Option
Luminaires	$\$ 15,887$	$\$ 7,732$	51.3% cheaper
Annual Energy $[\mathrm{kWh}]$	$\$ 1,841$	$\$ 2,464$	33.9% more expensive

After performing this interesting investigation, it was recognized that employing linear and CFLs luminaires is indeed cheaper in the short run. However, it is now evident why the design professionals decided to select an LED lighting scheme. Not only do LED fixtures have a lifespan of over twice that of CFLs, but it is also statistically proven that the cost of LED luminaires are decreasing too, which essentially explains the decision for the hotel to pursue LED's with optimism that AC Philadelphia will stay in operation for longer than the break-even point of approximately 13 years.

Conclusion

AC Hotel Philadelphia is a 15 story (including penthouse) transient hotel occupying a little over 107,000 SF. This report explored the proposed design of replacing the existing steel structure with a concrete structure. The proposed gravity system entails a one-way concrete slab with intermediate beams. For lateral support, concrete moment frames will be employed in the E-W direction and (4) $14^{\prime \prime}$ shear walls will resist loads in the N-S direction. A cost analysis was performed to determine the feasibility of the proposed design. After analyzing the data, it was determined that the suggested design is within 1% of the cost of the existing structure, making it feasible. With this said, it may be difficult to locate a qualified concrete supplier, driving the final price to the point that it may not be feasible. Due to the fact that all of the concrete is cast-inplace, the overall schedule of the project would be longer.

The lighting layout for the lobby/reception area was also analyzed to determine whether or not another scheme would be appropriate. Fluorescents and CFLs were implemented in place of the LED's and it was determined that the fluorescent option would be less expensive in the short run. However, after approximately 13 years, the LED scheme lends itself as the less expensive option because of lower power consumption cumulatively.

Overall, the proposed changes to AC Hotel Marriott are feasible within reason. Given that the hotel is built to last longer than the B.E.P. of 13 years for LEDs, it is evident that the existing scheme is appropriate. If the project is constructed at the proper time, the proposed structural design would also be feasible. MEP equipment would fit within the depths of the beams, allowing my goal of maintaining the required floor-to-ceiling height of $9^{\prime} 0^{\prime \prime}$ to be achieved.

Appendix A (Existing Structure Supplementary Info)

Isometric Views

Building Elevations

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

Gravity Loads

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

Live Loads \& Wind Information

Permissible Live Loads		
Area	Loading (PSF)	Live Load Reduction Permitted
First Floor	100	Yes
Second Floor	100	Yes
Typical Floor	$40+10$ partitions	Yes
Loading Dock	250	No
Roof Live Load	30	No

Wind Criteria	Value
Basic Wind Speed (3 sec gust)	90 mph
Occupancy Category	II
Site Exposure Category	B
Wind Importance Factor ($\left.\mathrm{I}_{\mathrm{w}}\right)$	1.0
Internal Pressure Coefficient $\left(\mathrm{GC}_{\mathrm{pi}}\right)$	$+0.18,-0.18$
External Pressure Coefficient $\left(\mathrm{GC}_{\mathrm{p}}\right)$	+0.88 (windward), -0.50 (leeward)

Seismic Information

9/28/2015
 Design Maps Summary Report

※USGS Design Maps Summary Report

User-Specified Input

Building Code Reference Document ASCE 7-05 Standard
(which utilizes USGS hazard data available in 2002)
Site Coordinates $39.95689^{\circ} \mathrm{N}, 75.16017^{\circ} \mathrm{W}$
Site Soil Classification Site Class C - "Very Dense Soil and Soft Rock"
Occupancy Category 1/II/III

USGS-Provided Output

$\mathbf{S}_{\mathrm{s}}=0.269 \mathrm{~g}$
$\mathbf{S}_{\mathrm{MS}}=0.323 \mathrm{~g}$
$\mathbf{S}_{\mathbf{M 1}}=0.101 \mathrm{~g}$
MCE Response Spectrum

$\mathbf{S}_{\mathrm{DS}}=0.216 \mathrm{~g}$
$\mathbf{S}_{\mathrm{D} 1}=0.068 \mathrm{~g}$

Center of Mass (COM) \& Center of Rigidity (COR)

Controlling Lateral Case (Wind) Building Drifts

Drift Comparison

Level	Elevation [ft]	Total Drift @ Particular Level [in]	Allowable Drift (h/400) [in]	Acceptable Drift?
Roof	181	4.74	5.43	yes
Penthouse	163	4.44	4.89	yes
14	149.25	3.87	4.48	yes
13	138.75	3.35	4.16	yes
12	128.25	2.99	3.85	yes
11	117.75	2.63	3.53	yes
10	107.25	2.28	3.22	yes
9	96.75	1.94	2.90	yes
8	86.25	1.61	2.59	yes
7	75.75	1.3	2.27	yes
6	65.25	1.03	1.96	yes
5	54.75	0.77	1.64	yes
4	44.25	0.55	1.33	yes
3	33.75	0.36	1.01	yes
2	15.66	0.22	0.47	yes
1	0	0	0.00	N/A

D-Beam Design Aid

D-Beam ${ }^{*}$ Calculator Reference Tool Version 3.1 (Load \& Resistance Factor Design - AISC 14th Edition)

D-Beam ${ }^{\text { }}$ Calculator Reference Tool Version 3.1 (Load \& Resistance Factor Design - AlSC 14th Edition)

D-Beam ${ }^{\text {© }}$ Calculator Reference Tool Version 3.1 (Load \& Resistance Factor Design - AISC 14th Edition)

Appendix B (Proposed Structure Supplementary Info)

Typ. Floor Beam \& Girder Sections

Lower Floor Beam \& Girder Sections

Specialized Elements' Sections

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8th, 2016

Typical Floor Rebar Layout

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

2nd Floor Rebar Layout

Assumptions

Slab Design

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

Beam Design

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

Girder Design

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

San B:
Augdicet "pan A lAmplight ${ }^{7}$ select (3) 47
$A_{\text {sop }}^{1-1 / 21}=\frac{12}{18}=0.92$ in $^{2} \rightarrow \operatorname{setect}(2)^{+1} 6\left(A=0.88 i^{2}\right)$
Asragdright $=\frac{230}{78}=4.2 i^{2} \rightarrow$ select $(4)^{49},(1)=4\left(\right.$ As $\left.4.2 i^{2}\right)$
thor: $1 / 2 \ln =7.75-\left(\frac{142}{\frac{1}{2}, 20}\right)=6.1^{1}$
$2 P=2(38.6)=77.2 / 17=4.54 \mathrm{k} / \mathrm{ft} \rightarrow \mathrm{V}_{\mathrm{ve}} \mathrm{d}=(4.54)(6.1)=27.7 \mathrm{k}$
$\phi V_{c}=33.3 \mathrm{~K} \rightarrow 1 / 2 \Delta V_{c}=16.6<27.7$: need rebar
use $3=9^{\prime}$ © select $" 3 \in 9^{*} \rightarrow \phi V_{n}=52 \mathrm{k}$ (frompervale) $>27.7 \mathrm{k}$.ok
$\frac{27.7-16.6}{4.84}=2.44+163=4.1$
$\frac{4 .(02)}{9}=6$: provide ${ }^{\# 1} 3(1)$ e $2^{\prime \prime}$ (6) 9^{*}

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

83 | Page

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

Column Design

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

Wind Information

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }, 2016}$

Seismic Information

AC Hotel Philadelphia | Final Report | Structural | Bordeau | April 8 ${ }^{\text {th }}$, 2016

Shear Wall Design

Appendix C(Construction Management Supplementary Info)

Proposed Design Detailed Estimate

Existing Design Detailed Estimate

 		$000 ¢^{*} \mathcal{E} \dagger \subseteq 10$	วบยปว
		0006＊¢8＊とZ ¢0 ¢0	
		$00 \mathcal{O} 0^{\circ} 8^{\circ} \mathrm{CZ}$ ¢0 ¢0	S
		0006＊$L^{\circ} \mathrm{C}$ ¢Z ZI 90	
［วə7s SUO7 ZZZ		06t8＊¢ L＊CZ ZI ¢0	
		Z0L8＊GL＊とZ ZL ¢0	
0LIx9EAIIOf			
$06 \times 08 \mathrm{Ml}$ dof		て0L9＊GL＊とて てI ¢0	
Gcx \dagger CM IOf		て0とら＇SL＊とZ ZI S0	
89x LZA IOf		Z0Et＊SL＊とZ ZI S0	
［L＇09x8LAI 10 J		て06どGL＊¢Z ZI 90	
LG＇9Ex9L A $^{\text {IOf }}$		て0LE＇GL＊¢Z ZI ¢0	
		て06て＇9 L＇¢Z ZI ¢0	
てZxカIM IOf		Z06I＊GL＊¢Z ZI ¢0	
OEx $21 / 10$ IOf		て0¢L｀GL＊とZ ZI ¢0	
6［xZIM 1Of		て0LI＇GL＊¢Z ZI ¢0	
		Z0L0＊GL＊とZ ZI ¢0	
［วəさs suO7 \dagger ¢Z		0608＊L＇¢ Z ZI ¢0	
		0¢カL゙LL＇とZ ZI ¢0	
SカI＇0ZI＇60LxカIM\ IOf		00tL゚LI＊とて ZI S0	
		0¢EL＇LİとZ ZI G0	
		00ZL゚LL＊とて ZI ¢0	suwnjo
		OGIL＊LL＇とZ ZI ¢0	sumos
LL＇09x0LA\10f			
$\dagger G^{\prime} 6 \nabla^{\prime} \varepsilon \varepsilon^{x} 0 \mathrm{~L} / \mathrm{M}$ IOf		000L゚LL＊とZ ZI S0	
て／［x9xてI＇て／［x9x8ISSH JOJ		00L9＊LL＇とZ ZI ¢0	
乙／［x8x8SSH IOf		009ガLL＊とZ ZI ¢0	
乙／［x9x9＊8／Ex9x9SSH IOf		OSSt゙LI＊とZ ZI S0	
		00L0＊O¢ ¢ L It \＆0	qe IS
5270 N	uoụd！̣．15	ıəqunn ${ }^{\text {®u！}}$	Кıо．ठิวาеว
			：u0！̣e0oT
：əวınoS			

60t＇t91＇${ }^{\text {c }}$ \＄																					
6L0＇I	วu！L																				
6と1＇I	ио̣елот																				
6 6て＇ナL9＇z\＄																					
$00 Z^{\prime} \subseteq 6 \$$	8	00＊006 L	00＊006LI					V＇旦													
t0z\＄	I	$00^{\circ} \mathcal{S}$ L	00＇t0z	$00^{\circ} 0$	$00 \pm 0 z$	$00^{\circ} 0$	$00^{\circ} 0$	gof	t	\checkmark	${ }^{4} \times 2 \mathrm{SS} \mathrm{L}$										
IZ0＇II\＄	6 Z ¢	\＆8＇Z	ع0＇Z	LS＇0	$68^{\circ} 0$	$00^{\circ} 0$	ع9＊0	V＇G	LIO＊	SE6	01－3										
G9I＇z\＄	I	00＇¢Z¢¢	00＊¢9IZ	00．S9L	00＊00t I	00×0	$00^{\circ} 0$	GOI	87	\checkmark	て－G										
V／N	V / N	V／N	V／N	V / N	V / N	V / N	\％01	TTV	V / N	V / N	V / N										
IEL＇z8\＄	691	$00^{\circ} 96$	\＆S＊ 68 t	19＊	26.8	$00 \% 8 t$	00．0tt	HT	$\angle L 0^{\circ} 0$	¢\＆0L	9－＇G										
¢¢¢＇zI\＄	IS	00．8ちて	6L＊Sちて	$\varepsilon \dagger^{\circ} \mathrm{I}$	$9 t^{\circ} \mathrm{E}$	06．0ヶて	00．6I2	HT	$890^{\circ} 0$	0LII	S－B										
800＇01\＄	Lt	00＊912	ャ6＊てIZ	Lが	LS＇ \mathcal{L}	06．${ }^{\circ} 0$ Z	00．681	HT	L LO ${ }^{\circ}$	\pm ¢LI	¢－G										
189＇てZ\＄	$6 \varepsilon 1$	00＊ 291	Lİと91	$6 \varepsilon^{\circ} 1$	$8 \varepsilon^{\circ} \mathrm{E}$	0t．8S I	$00^{\circ}+\square$ L	HT	L90．0	00ZI	S－G										
て¢1＇E¢\＄	99t	$00^{\circ} \mathrm{LIL}$	90＊ャレ	LS＇${ }^{\text { }}$	¢9 ${ }^{\circ} \mathrm{E}$	06．801	00：66	HT	ZLO＇0	0LIL	S－3										
L99＇St\＄	\＆¢¢	0¢．88	89＇¢8	LS ${ }^{\circ}$	18＊ε	0ع゙08	$00^{\circ} \mathrm{E}$ L	HT	SLO＇0	†90I	S－B										
998＇¢ $5 \$$	\＆91	$00 \cdot 86$	Lでャ6	\＆8． 1	ガャ	$00 \cdot 88$	$00^{\circ} 08$	HT	$880^{\circ} 0$	216	S－3										
St0＇てカ\＄	865	$0 c^{\prime} \varepsilon L$	IE゙0L	$t L^{\circ} \mathrm{L}$	てでャ	Sどャ9	0¢．8S	HT	ع80\％ 0	096	¢－G										
とてt＇しl！	L6S I	OC＇ZL	LL＊69	L6．1	LS．ε	Sc゙ャ9	0¢．85	HT	L0＇0	008	2－B										
$9 \downarrow$ ¢「 \dagger \＄	08	$00^{\circ} \mathrm{LS}$	てどちら	0L＊	て1•¢	0c＇6t	$00^{\circ} \mathrm{S}$ ¢	HT	$290 \cdot 0$	006	2－B										
¢ IL＇9て\＄	995	00＇8t	カl｀9t	\＆$¢^{\prime}$ I	18＇Z	08．It	00．88	HT	$99^{\circ} 0$	000 I	2－3										
¢86＇z8\＄	L6LI	00．8t	81．9t	$\dagger C^{*} \mathrm{~L}$	${ }^{\circ} 8^{\circ} \mathrm{Z}$	08＇叶	00．88	HT	LS0＇0	066	て－号										
098＇t\＄	†01	00\％6t	$\varepsilon L^{\circ} 9 t$	tL＇I	$61^{\circ} \mathrm{E}$	08．1地	00．8E	HT	t90．0	088	2－3										
$8 \pm C^{6} て \angle \$$	LSEZ	$00^{\circ} \mathrm{\varepsilon}$ ¢	8L＇0¢	†L＇I	$6{ }^{\circ} \mathrm{C}$	S8．92	0¢．$¢ Z$	HT	t90．0	088	2－3										
0\＄	0	0¢＇06	¢S．98	8L＇Z	01＊S	S9＊8L	0¢＇IL	HT	20100	0¢S	て－品										
2¢ I＇9\＄	¢ $\dagger 1$	0c．9t	とtでて	Sc＇Z	$89^{\circ} \mathrm{t}$	$0 て ゙ \subseteq \varepsilon$	00＇ZE	HT	E60 0	009	2－3										
とZS＇9てI\＄	¢0ZZ	0¢＇L9	$8 \varepsilon^{\circ} \angle S$	$8 L^{\circ} \mathrm{Z}$	$0 L^{\circ} \mathrm{S}$	$0 c^{\prime} 6 t$	$00^{\circ} \mathrm{C} t$	HT	201＊0	OSS	2－3										
0Lt\＄	I	00．09L	00＊0しt	$00^{\circ} 0$	00＊01t	$00^{\circ} 0$	$00^{\circ} 0$	gof	8	I	${ }^{4} \mathrm{M}$ SS I										
V／N	V／N	V / N	V／N	V / N	V / N	V / N	\％01	TTV	V / N	V／N	V / N										
L9で9てを\＄	¢\＆II	00.682	9 ¢ $^{\circ} \mathrm{L8Z}$	89＊	$80^{\circ} \mathrm{E}$	0L＇z8Z	$00^{\circ} \mathrm{LSZ}$	HT	190.0	216	て－雷										
	\＆60I	00\％661	20＊ 261	$6 \mathrm{C}^{\circ} \mathrm{I}$	$\varepsilon 6^{\circ} \mathrm{Z}$	0¢＇Z6I	00＇s ${ }^{\circ}$ L	HT	$89^{\circ} 0$	096	2－3										
9LE＇LL\＄	879	00＊9ZI	Lでとて」	SC． 1	$98^{\circ} \mathrm{Z}$	08．81	00．801	HT	LSO＇0	± 86	て－㫛										
908＇81\＄	IE1	00＊9tl	じゃも】	¢S．1	$98^{\circ} \mathrm{Z}$	0L．6をI	$00^{\circ} \mathrm{LZL}$	HT	LSO＊	†86	2－3										
216＇LE\＄	8LE	0c．98	0¢＇カ8	$87^{\circ} 1$	てL＇Z	0ع゙08	$00^{\circ} \mathrm{E}$ L	HT	tS0．0	てع01	て－旦										
ャIS＇9t\＄	しIt	00．91I	Lع゙としI	SC．1	98＇Z	06．801	00．66	HT	LSO＊	†86	2－3										
8とL＇06\＄	06II	09．8L	Sで9L	$87^{\circ} 1$	ZL＇Z	S0＇ZL	0¢＇¢9	HT	t¢0．0	ZE0I	2－3										
06て＇8\＄	¢	$00^{\circ} \mathrm{C}$ ¢LI	00．8乌91	$00^{\circ} \mathrm{Z}$ ¢	05．85	0c＇L9S I	$00^{\circ} \mathrm{C}$ ¢ I	V＇	L9I＇I	8t	2－3										
976＇LE\＄	$\dagger \mathcal{L}$	$00^{*} 066$	00\％686	0¢．08	00．95	0¢＇Z58	$00^{\circ} \mathrm{S}$ LL	V＇	で「1	OS	2－3										
L9t＇て¢I\＄	8LZ	00＊029	0c＊9Lt	0c＇82	00＇Z5	00．96を	00．09を	V＇G	LE0＇I	\dagger ¢	2－3										
Z9t「99L\＄	$860 \angle 8$	Stol	$08^{\circ} 8$	LS 0	ع1’	V／N	01＊${ }^{\circ}$	HS	¢Z0＊0	002ε	L－3										
［ ${ }_{\text {PIO }}$ L	KıpuenO		$\begin{gathered} \text { [eło, }^{4!u_{\Omega}} \end{gathered}$	ұuәud！̣！${ }_{\text {¢ }}^{\text {H }}$	noqet			＋！${ }_{\text {IU }}$	$\begin{aligned} & \text { S.no } \mathrm{H} \\ & \text { soqer } \mathrm{I} \end{aligned}$	ındın O 	мә．З										

Time Factor \& System Breakdown

Time Factor		
Variable	Value	Unit
Projected Project Timeline	$10 / 2015-06 / 2017$	
Mid Project	$8 / 1 / 2016$	
RS Means Data	$1 / 1 / 2014$	
Adjustment	31	months
	2.58	yrs
Inflation	3	$\%$
Time Factor	1.08	

System Breakdown				
Component	Steel	\%	Concrete	$\%$
Slab	$\$ 942,182$	30%	$\$ 1,133,412$	35%
Framing	$\$ 886,669$	28%	$\$ 1,169,050$	37%
Columns	$\$ 1,204,735$	38%	$\$ 336,165$	11%
Miscellaneous	$\$ 130,824$	4%	$\$ 554,558$	17%
Total	$\$ 3,164,409$	100%	$\$ 3,193,185$	100%

102 | Page

Total Area [cy]							Contact Area [sf]	\#Bars/Col	\# Rebar used	Weight $[\mathbf{l b} / \mathbf{f t}]$	Total Rebar [lb]
48.2	3471.0	4	9	3.4	7868						
16.5	1187.4	4	9	3.4	2691						
15.1	980.0	4	9	3.4	1999						
24.9	1468.1	4	10	4	3446						
2.3	132.7	4	10	4	312						
18.6	1004.8	4	11	5	2669						
7.9	565.2	4	9	3.4	1281						
31.0	2230.8	4	9	3.4	5056						
12.3	883.2	4	9	3.4	2002						
82.2	5914.8	4	9	3.4	13407						
90.5	6516.0	4	9	3.4	14770						
7.0	502.5	4	9	3.4	1139						
38.6	2776.8	4	9	3.4	6294						
8.6	560.0	4	9	3.4	1142						
14.2	838.9	4	10	4	1969						
9.3	502.4	4	11	5	1335						
427	29535				$\mathbf{6 7 3 8 0}$						

-1

Concrete Slab Rebar Takeoffs

Concrete Slab Rebar Takeoffs							
Slab	Slab Area	Slab Length (N-S) [ft]	Eff Slab Length (E-W) [ft]	\# Rows \#4 (@12")	Wt \#4 Rebar [plf]	Rebar Wt [lb]	
Roof	3252	59	55.1	55	0.668	2172	
Typ Floor (11)	56859	59	963.7	964	0.668	37982	
3rd	7944	73	108.8	109	0.668	5307	
2nd	7724	86.5	89.3	89	0.668	5160	
1st	7875	86.5	91.0	91	0.668	5261	
						$\mathbf{5 5 8 8 1}$	

Concrete Beam \& Girder Rebar Takeoffs										
Floor	Beams \& Girders	Rebar \#	\# Bars	Length [ft]	Weight [plf]	\# Beams/Girds	\# Floors	$\begin{gathered} \text { Total Rebar } \\ \text { Wt [lb] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { \#3-\#7 } \\ \text { [lb] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \# 8-\# 18 \\ {[\mathrm{lb}]} \\ \hline \end{gathered}$
Typ. Floor	Beam	7	4	92.0	2.04	12	12	108316	108316	
	Gird	7	2	59.0	2.04	12	12	34732	34732	
		9	2	59.0	3.40	6	12	28886		28886
3rd	Beam	7	5	109.5	2.04	11	1	12310	12310	
		7	2	78.0	2.04	4	1	1275	1275	
		8	2	78.0	2.67	4	1	1666		1666
	Gird	9	5	86.5	3.40	3	1	4412		4412
		9	5	73.0	3.40	2	1	2482		2482
		9	5	59.0	3.40	1	1	1003		1003
2nd	Beam	7	5	109.5	2.04	12	1	13429	13429	
		7	2	78.0	2.04	6	1	1913	1913	
		8	2	78.0	2.67	6	1	2499		2499
	Gird	9	5	86.5	3.40	3	1	4412		4412
		9	5	73.0	3.40	2	1	2482		2482
		9	5	59.0	3.40	1	1	1003		1003
1st	Beam	7	5	109.5	2.04	12	1	13429	13429	
		7	5	63.0	2.04	3	1	1932	1932	
		7	5	96.5	2.04	3	1	2959	2959	
	Gird	9	5	86.5	3.40	3	1	4412		4412
		9	5	73.0	3.40	2	1	2482		2482
		9	5	59.0	3.40	1	1	1003		1003
									190294	56741.1

Existing Structure Takeoffs

Hollow-Core Precast Structural Slab Takeoffs					
Level	Area $\left[\mathbf{f t}^{\wedge} \mathbf{2}\right]$	Openings $\left[\mathbf{f t}^{\wedge} \mathbf{2}\right]$	Applicable Area $\left[\mathbf{f t}^{\wedge} \mathbf{2}\right]$	\# Floors	Total Area $\left[\mathbf{f t}^{\wedge} \mathbf{2}\right]$
Roof	4002	750	3252	1	3252
Typ Floor	5925	488	5437	11	59807
Floor 3	8662	718	7944	1	7944
Floor 2	9770	938	8832	1	8832
Floor 1	8050	787	7263	1	7263
					$\mathbf{8 7 0 9 8}$

Steel Braced Frames Takeoffs										
Braced Frames	BF-1	BF-2	BF-3	BF-4	BF-5	BF-6	BF-7	BF-8	Total Length of Specific Beam $[\mathbf{l f}]$	Quantity (adj for length)
HSS6x6x3/8,6x6x1/2	520	520	520	520	520	352	189	189	3330	278
HSS8x8x1/2	80	80	80	80	80	0	39	39	478	34
HSS18x6x1/2,12x6x1/2	96	0	0	0	0	0	0	0	96	6

Steel Beam Takeoffs							
Beams	Typ. Floor	3rd Floor	2nd Floor	1st Floor	Total $[\mathbf{l f}]$	Amount of Steel [tons]	
W88x13,15,31 DB8x37=W8x35 DB8x61=W8x58 DB8x65=W8x67	173	33.8	75.4	20	2205	34.2	
W10x15,22,33	0	24.6	51.2	68.8	145	1.6	
W12x16,19	55.3	770.2	593.4	329.6	2357	22.4	
W12x26,30	0	0	103.8	0	104	1.3	
W14x22,26	108	326.4	123.1	51.9	1797	23.4	
W16x26,31,36,57	20.2	242.4	43.8	37.4	566	8.8	
W16x31	0	79.8	0	0	80	1.2	
W16x36,40,57	126.8	23.7	11.1	40.4	1597	31.9	
W18x40	0	114.5	254.2	229	598	12.0	
W18x55,60,71	0	0	144.5	18.3	163	4.9	
W21x50,68	19.2	19.2	150.2	133	533	18.1	
W24x55,68	0	97.6	160	207.9	466	12.8	
W30x90,99	0	0	58.8	80.5	139	6.3	
W33x130	0	17.8	29	0	47	3.0	
W36x150,170	0	33.9	17.3	0	51	4.4	
W36x302,330,360,3							
61,652	0	146	23.2	0	169	30.5	
W40x211,593							
Shear Stud Count	241	742	970	825	5429	5.4	
						222.1	

0 －\downarrow ¢	S96t	¢L＇${ }^{\text {c }}$	¢L＇¢ ${ }^{\text {c }}$	¢L＇¢ ${ }^{\text {c }}$	99＇¢1	¢L＇${ }^{\text {c }}$	$\varsigma L^{\prime} \varepsilon \varepsilon$	¢L＇$¢ \varepsilon$	¢L＇${ }^{\text {c }}$	¢L＇¢¢	9でヤ91	¢でャ91	¢でャ91	¢ L＇E	¢＇0¢1	¢＇0¢1	¢ L^{\prime} ¢	¢ $¢$＇$¢ \varepsilon$	¢L＇$¢ \varepsilon$	161
0．001	9¢LI	0	0	0	0	0	0	0	0	¢L＇$\varepsilon \varepsilon$	0	0	0	0	0	0	0	0	¢L＇¢	¢て＇¢9
$9^{\prime} 69$	E601	0	0	0	0	0	0	0	0	0	0	0	¢て＇¢9	0	0	0	$\varsigma L^{\prime} ¢ \varepsilon$	0	0	¢9
I＇61	879	0	0	0	0	0	0	0	0	0	0	0	66	0	0	0	0	0	0	¢L＇Z9
て＇G	IEL	0	0	0	0	0	0	0	0	0	0	0	0	¢L＇¢	0	0	0	0	0	0
t＇6	$8 L \varepsilon$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 ¢ 1	LIt	0	0	0	$99^{\circ} \mathrm{S}$ I	0	0	0	0	0	0	¢て＇¢9	0	0	0	0	0	0	0	0
8＇92	06II	¢ L^{\prime}＇	¢ ι^{\prime} ¢	$\bigcirc L^{\prime} \varepsilon \varepsilon$	0	¢ L^{\prime}＇	¢L＇¢	¢L＇¢¢	$\varsigma L^{\prime} \varepsilon \varepsilon$	0	¢でヤ91	66	0	0	¢＇0¢1	¢＇0¢1	0	$\varsigma L^{\prime} ¢ \varepsilon$	0	0
［suor］ ［әวңs јо ұunoury		$8^{\circ} \mathrm{E}$－${ }^{-3}$	¢โ－【	t＇II－a	L－d	9 9－』	$¢^{\prime} \varepsilon- \pm$	tl－8＇G	が－G	£I－G	8＇ZI－G	01－3	9－3	$9^{\prime} \varepsilon$－$-\frac{1}{}$	7－3	E＂I－G	［－G	げど相	El－c＊U	6－¢＇U

161	¢＇0¢1	¢＇0¢	¢でャ91	161	161	¢ \llcorner＇¢¢	181	181	181	ç゙Ltı	¢L＇¢¢	181	181	181	99＇st	¢L＇¢¢	181	181	181	ç゙Lち1	¢L＇¢¢	181	181	¢¢ ¢ ¢9	sproo
¢ 2＇s $^{\text {c }}$	0	0	0	¢て＇¢9	¢て＇¢9	0	0	¢L＇96	¢L＇96	0	¢ ¢＇＇¢	č＇96	¢L．＇96	0	0	0	0	¢L＇96	¢L．${ }^{\text {c }}$	0	0	¢L．＇96	¢L．96	0	LSで¢¢z＇tIで9LIxtIM
¢9	0	0	¢ L^{\prime}＇¢	¢9	¢9	0	0	¢で18	¢で18	0	0	¢で18	¢で＇t8	0	0	0	0	¢で18	¢で＇t8	0	¢L＇¢¢	¢で＇t8	¢で＇8	0	
¢L＇Z9	0	0	¢＇0¢1	¢L＇Z9	¢L＇z9	0	0	0	0	¢でLtI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	$¢^{\prime \prime \prime}$ ¢	0	0	0	0	¢L＇¢¢	0	0	0	0	0	0	0	0	0	0	0	0	¢＇IE	0	0	0	0	
0	0	66	0	0	0	0	¢でLDI	0	0	0	0	0	0	0	99＇cı	0	0	0	0	¢L＇SII	0	0	0	0	
0	¢．0¢	0	0	0	0	0	0	0	0	0	0	0	0	¢L＇¢¢	0	0	0	0	0	0	0	0	0	¢¢＇．991	LL＇890 09×0 L M
0	0	0	0	0	0		0	0	0	0	0	0	0	¢でしゃ	0	CL＇¢ $¢$	181	0	0	0	0	0	0	0	
$L-\varepsilon \cdot \sigma$	£－ם	¢－a	I－a	6－L＇כ	L－L＇O	tio	£โכ	てા－כ	L－כ	8 8－3	6＇9－3	$t-5$	¢－〕	I－5	I＇ε－q	tr^{-g}	£1－g	zI－g	If^{-G}	${ }^{8-g}$	69－g	$t-q$	$\varepsilon-q$	I－g	summo

Appendix D (Lighting Supplementary Info)

Finish \& Glazing Schedules

Existing \& Proposed Luminaire Schedules

113 | P a g e

Electricity Prices

2015 Avg. Price for Electrictiy (Philadelphia, Pa)	
Month	$\$ \$ / \mathbf{k W h}$
January	$\$ 0.159$
February	$\$ 0.160$
March	$\$ 0.156$
April	$\$ 0.157$
May	$\$ 0.156$
June	$\$ 0.160$
July	$\$ 0.159$
August	$\$ 0.159$
September	$\$ 0.158$
October	$\$ 0.155$
November	$\$ 0.155$
December	$\$ 0.155$
Average Price	$\$ 0.157$

20-Year Cost Comparison

	System	
Year	LED	Fluorescent
0	$\$ 15,887$	$\$ 7,732$
1	$\$ 17,728$	$\$ 10,196$
2	$\$ 19,568$	$\$ 12,661$
3	$\$ 21,409$	$\$ 15,125$
4	$\$ 23,250$	$\$ 17,589$
5	$\$ 25,090$	$\$ 20,054$
6	$\$ 26,931$	$\$ 22,518$
7	$\$ 28,772$	$\$ 24,982$
8	$\$ 30,613$	$\$ 27,447$
9	$\$ 32,453$	$\$ 29,911$
10	$\$ 34,294$	$\$ 32,375$
11	$\$ 36,135$	$\$ 34,840$
12	$\$ 37,975$	$\$ 37,304$
13	$\$ 39,816$	$\$ 39,768$
14	$\$ 41,657$	$\$ 42,233$
15	$\$ 43,497$	$\$ 44,697$
16	$\$ 45,338$	$\$ 47,162$
17	$\$ 47,179$	$\$ 49,626$
18	$\$ 49,020$	$\$ 52,090$
19	$\$ 50,860$	$\$ 54,555$
20	$\$ 52,701$	$\$ 57,019$

